Search results
Results From The WOW.Com Content Network
Ordinal data is a categorical, statistical data type where the variables have natural, ordered categories and the distances between the categories are not known. [ 1 ] : 2 These data exist on an ordinal scale , one of four levels of measurement described by S. S. Stevens in 1946.
In statistics, ordinal regression, also called ordinal classification, is a type of regression analysis used for predicting an ordinal variable, i.e. a variable whose value exists on an arbitrary scale where only the relative ordering between different values is significant.
For example, characters are ordinal because we can call 'A' the first character, 'B' the second, etc. The term is often used in programming for variables that can take one of a finite (often small) number of values.
Level of measurement or scale of measure is a classification that describes the nature of information within the values assigned to variables. [1] Psychologist Stanley Smith Stevens developed the best-known classification with four levels, or scales, of measurement: nominal, ordinal, interval, and ratio.
Because variables conforming only to nominal or ordinal measurements cannot be reasonably measured numerically, sometimes they are grouped together as categorical variables, whereas ratio and interval measurements are grouped together as quantitative variables, which can be either discrete or continuous, due to their numerical nature.
In comparison, variables with unordered scales are nominal variables. [1] Visual difference between nominal and ordinal data (w/examples), the two scales of categorical data [2] A nominal variable, or nominal group, is a group of objects or ideas collectively grouped by a particular qualitative characteristic. [3]
For ordinal variables the median can be calculated as a measure of central tendency and the range (and variations of it) as a measure of dispersion. For interval level variables, the arithmetic mean (average) and standard deviation are added to the toolbox and, for ratio level variables, we add the geometric mean and harmonic mean as measures ...
In statistics, ranking is the data transformation in which numerical or ordinal values are replaced by their rank when the data are sorted.. For example, if the numerical data 3.4, 5.1, 2.6, 7.3 are observed, the ranks of these data items would be 2, 3, 1 and 4 respectively.