Search results
Results From The WOW.Com Content Network
Energy densities table Storage type Specific energy (MJ/kg) Energy density (MJ/L) Peak recovery efficiency % Practical recovery efficiency % Arbitrary Antimatter: 89,875,517,874: depends on density: Deuterium–tritium fusion: 576,000,000 [1] Uranium-235 fissile isotope: 144,000,000 [1] 1,500,000,000
The highest energy-density fuel (by weight) in common propellant combinations is hydrogen. However, gaseous hydrogen has very low (volume) density; liquified hydrogen has higher density but is complex and expensive to store. When combined with carbon, hydrogen can be rendered into the easily burnable hydrocarbon fuels.
For energy storage, the energy density relates the stored energy to the volume of the storage equipment, e.g. the fuel tank. The higher the energy density of the fuel, the more energy may be stored or transported for the same amount of volume. The energy of a fuel per unit mass is called its specific energy.
Due to the higher density, diesel fuel offers a higher volumetric energy density: the density of EN 590 diesel fuel is defined as 0.820 to 0.845 kg/L (6.84 to 7.05 lb/US gal) at 15 °C (59 °F), about 9.0-13.9% more than EN 228 gasoline (petrol)'s 0.720–0.775 kg/L (6.01–6.47 lb/US gal) at 15 °C, which should be put into consideration when ...
JP-10 absorbs heat energy, so is endothermic with a relatively high density of 940 kg/m 3. It has a low freezing point of less than −110 °C (−166 °F) and the flash point is 130 °F (54 °C). The high energy density of 39.6 MJ/L makes it ideal for military aerospace applications - its primary use.
High-energy-density matter (HEDM) is a class of energetic materials, particularly fuel, with a high ratio of potential chemical energy output to density, usually termed "thrust-to-weight ratio", hence "high energy density". The substances are extremely reactive, therefore potentially dangerous, and some consider them impractical.
Most transportation fuels are liquids, because vehicles usually require high energy density. This occurs naturally in liquids and solids. High energy density can also be provided by an internal combustion engine. These engines require clean-burning fuels. The fuels that are easiest to burn cleanly are typically liquids and gases.
Specific energy is energy per unit mass, which is used to describe the chemical energy content of a fuel, expressed in SI units as joule per kilogram (J/kg) or equivalent units. [1] Energy density is the amount of chemical energy per unit volume of the fuel, expressed in SI units as joule per litre (J/L) or equivalent units. [2]