Ad
related to: pathline vs streakline streamline water
Search results
Results From The WOW.Com Content Network
The red particle moves in a flowing fluid; its pathline is traced in red; the tip of the trail of blue ink released from the origin follows the particle, but unlike the static pathline (which records the earlier motion of the dot), ink released after the red dot departs continues to move up with the flow. (This is a streakline.)
File:Lagrangian vs Eulerian [further explanation needed] Eulerian perspective of fluid velocity versus Lagrangian depiction of strain. In classical field theories , the Lagrangian specification of the flow field is a way of looking at fluid motion where the observer follows an individual fluid parcel as it moves through space and time.
The development here assumes the space domain is three-dimensional. The concept of stream function can also be developed in the context of a two-dimensional space domain. In that case level sets of the stream function are curves rather than surfaces, and streamlines are level curves of the stream function.
Article covers many important aspects, but still needs more figures showing different streamline/streakline patterns in flows. Possibility of adding timeline which are also used to describe/visualize a flow. Timeline describes the deformation of adjacent fluid particles as they move around. Sketch showing different types of lines in a flow field.
A wide variety of river and stream channel types exist in limnology, the study of inland waters.All these can be divided into two groups by using the water-flow gradient as either low gradient channels for streams or rivers with less than two percent (2%) flow gradient, or high gradient channels for those with greater than a 2% gradient.
Pressure field (colors), stream function (black) with contour interval of 0.2Ur from bottom to top, velocity potential (white) with contour interval 0.2Ur from left to right. A cylinder (or disk) of radius R is placed in a two-dimensional, incompressible, inviscid flow.
The temperature of the water locally may be increasing due to one portion of the river being sunny and the other in a shadow, or the water as a whole may be heating as the day progresses. The changes due to the particle's motion (itself caused by fluid motion) is called advection (or convection if a vector is being transported).
The frequency at which vortex shedding takes place for a cylinder is related to the Strouhal number by the following equation: = Where is the dimensionless Strouhal number, is the vortex shedding frequency (Hz), is the diameter of the cylinder (m), and is the flow velocity (m/s).