When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. p-value - Wikipedia

    en.wikipedia.org/wiki/P-value

    In null-hypothesis significance testing, the p-value [note 1] is the probability of obtaining test results at least as extreme as the result actually observed, under the assumption that the null hypothesis is correct. [2] [3] A very small p-value means that such an extreme observed outcome would be very unlikely under the null hypothesis.

  3. Haybittle–Peto boundary - Wikipedia

    en.wikipedia.org/wiki/Haybittle–Peto_boundary

    List of p-values used at each interim analysis, assuming the overall p-value for the trial is 0.05 ; Number of planned analyses Interim analysis p-value threshold ; 2: 1: 0.001 2 (final)

  4. Statistical significance - Wikipedia

    en.wikipedia.org/wiki/Statistical_significance

    In 2016, the American Statistical Association (ASA) published a statement on p-values, saying that "the widespread use of 'statistical significance' (generally interpreted as 'p ≤ 0.05') as a license for making a claim of a scientific finding (or implied truth) leads to considerable distortion of the scientific process". [57]

  5. Axsome Reveals Data From Alzheimer's Studies, Analyst ... - AOL

    www.aol.com/axsome-reveals-data-alzheimers...

    AXS-05 also met the key secondary endpoint (relapse prevention, p=0.001). Further, AXS-05 reduced the w Axsome Reveals Data From Alzheimer's Studies, Analyst Sees Hope Despite Mixed Trial Results

  6. False positives and false negatives - Wikipedia

    en.wikipedia.org/wiki/False_positives_and_false...

    In statistical hypothesis testing, this fraction is given the Greek letter α, and 1 − α is defined as the specificity of the test. Increasing the specificity of the test lowers the probability of type I errors, but may raise the probability of type II errors (false negatives that reject the alternative hypothesis when it is true).

  7. Omnibus test - Wikipedia

    en.wikipedia.org/wiki/Omnibus_test

    The F statistics of the omnibus test is: = = (¯ ¯) = = (¯) Where, ¯ is the overall sample mean, ¯ is the group j sample mean, k is the number of groups and n j is sample size of group j. The F statistic is distributed F (k-1,n-k),(α) under assumption of null hypothesis and normality assumption.

  8. Levene's test - Wikipedia

    en.wikipedia.org/wiki/Levene's_test

    In statistics, Levene's test is an inferential statistic used to assess the equality of variances for a variable calculated for two or more groups. [1] This test is used because some common statistical procedures assume that variances of the populations from which different samples are drawn are equal. Levene's test assesses this assumption.

  9. Chi-squared distribution - Wikipedia

    en.wikipedia.org/wiki/Chi-squared_distribution

    Just as extreme values of the normal distribution have low probability (and give small p-values), extreme values of the chi-squared distribution have low probability. An additional reason that the chi-squared distribution is widely used is that it turns up as the large sample distribution of generalized likelihood ratio tests (LRT). [ 8 ]