When.com Web Search

  1. Ads

    related to: spherical trigonometry examples problems in real life solutions dallas tx

Search results

  1. Results From The WOW.Com Content Network
  2. Spherical trigonometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_trigonometry

    Spherical trigonometry is the branch of spherical geometry that deals with the metrical relationships between the sides and angles of spherical triangles, traditionally expressed using trigonometric functions. On the sphere, geodesics are great circles. Spherical trigonometry is of great importance for calculations in astronomy, geodesy, and ...

  3. Solution of triangles - Wikipedia

    en.wikipedia.org/wiki/Solution_of_triangles

    Solution of triangles (Latin: solutio triangulorum) is the main trigonometric problem of finding the characteristics of a triangle (angles and lengths of sides), when some of these are known. The triangle can be located on a plane or on a sphere. Applications requiring triangle solutions include geodesy, astronomy, construction, and navigation.

  4. Spherical law of cosines - Wikipedia

    en.wikipedia.org/wiki/Spherical_law_of_cosines

    In spherical trigonometry, the law of cosines (also called the cosine rule for sides [1]) is a theorem relating the sides and angles of spherical triangles, analogous to the ordinary law of cosines from plane trigonometry. Spherical triangle solved by the law of cosines. Given a unit sphere, a "spherical triangle" on the surface of the sphere ...

  5. Spherical geometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_geometry

    Spherical trigonometry was studied by early Greek mathematicians such as Theodosius of Bithynia, a Greek astronomer and mathematician who wrote Spherics, a book on the geometry of the sphere, [2] and Menelaus of Alexandria, who wrote a book on spherical trigonometry called Sphaerica and developed Menelaus' theorem. [3] [4]

  6. Lexell's theorem - Wikipedia

    en.wikipedia.org/wiki/Lexell's_theorem

    An area formula for spherical triangles analogous to the formula for planar triangles. Given a fixed base , an arc of a great circle on a sphere, and two apex points and on the same side of great circle , Lexell's theorem holds that the surface area of the spherical triangle is equal to that of if and only if lies on the small-circle arc , where and are the points antipodal to and , respectively.

  7. Geodesics on an ellipsoid - Wikipedia

    en.wikipedia.org/wiki/Geodesics_on_an_ellipsoid

    For a sphere the solutions to these problems are simple exercises in spherical trigonometry, whose solution is given by formulas for solving a spherical triangle. (See the article on great-circle navigation.) For an ellipsoid of revolution, the characteristic constant defining the geodesic was found by Clairaut (1735).