When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Lagrange polynomial - Wikipedia

    en.wikipedia.org/wiki/Lagrange_polynomial

    Lagrange and other interpolation at equally spaced points, as in the example above, yield a polynomial oscillating above and below the true function. This behaviour tends to grow with the number of points, leading to a divergence known as Runge's phenomenon ; the problem may be eliminated by choosing interpolation points at Chebyshev nodes .

  3. Polynomial interpolation - Wikipedia

    en.wikipedia.org/wiki/Polynomial_interpolation

    Left to right steps indicate addition whereas right to left steps indicate subtraction; If the slope of a step is positive, the term to be used is the product of the difference and the factor immediately below it. If the slope of a step is negative, the term to be used is the product of the difference and the factor immediately above it.

  4. Lagrange multiplier - Wikipedia

    en.wikipedia.org/wiki/Lagrange_multiplier

    In mathematical optimization, the method of Lagrange multipliers is a strategy for finding the local maxima and minima of a function subject to equation constraints (i.e., subject to the condition that one or more equations have to be satisfied exactly by the chosen values of the variables). [1] It is named after the mathematician Joseph-Louis ...

  5. Hermite interpolation - Wikipedia

    en.wikipedia.org/wiki/Hermite_interpolation

    Lagrange interpolation allows computing a polynomial of degree less than n that takes the same value at n given points as a given function. Instead, Hermite interpolation computes a polynomial of degree less than n such that the polynomial and its first few derivatives have the same values at m (fewer than n) given points as the given function ...

  6. Lebesgue constant - Wikipedia

    en.wikipedia.org/wiki/Lebesgue_constant

    In other words, the interpolation polynomial is at most a factor Λ n (T ) + 1 worse than the best possible approximation. This suggests that we look for a set of interpolation nodes with a small Lebesgue constant. The Lebesgue constant can be expressed in terms of the Lagrange basis polynomials:

  7. Parks–McClellan filter design algorithm - Wikipedia

    en.wikipedia.org/wiki/Parks–McClellan_filter...

    The Parks–McClellan Algorithm may be restated as the following steps: [2] Make an initial guess of the L+2 extremal frequencies. Compute δ using the equation given. Using Lagrange Interpolation, we compute the dense set of samples of A(ω) over the passband and stopband. Determine the new L+2 largest extrema.

  8. Sylvester's formula - Wikipedia

    en.wikipedia.org/wiki/Sylvester's_formula

    In matrix theory, Sylvester's formula or Sylvester's matrix theorem (named after J. J. Sylvester) or Lagrange−Sylvester interpolation expresses an analytic function f(A) of a matrix A as a polynomial in A, in terms of the eigenvalues and eigenvectors of A. [1] [2] It states that [3]

  9. Stencil (numerical analysis) - Wikipedia

    en.wikipedia.org/wiki/Stencil_(numerical_analysis)

    The finite difference coefficients for a given stencil are fixed by the choice of node points. The coefficients may be calculated by taking the derivative of the Lagrange polynomial interpolating between the node points, [3] by computing the Taylor expansion around each node point and solving a linear system, [4] or by enforcing that the stencil is exact for monomials up to the degree of the ...