When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Symmetric mean absolute percentage error - Wikipedia

    en.wikipedia.org/wiki/Symmetric_mean_absolute...

    In contrast to the mean absolute percentage error, SMAPE has both a lower and an upper bound. Indeed, the formula above provides a result between 0% and 200%. Indeed, the formula above provides a result between 0% and 200%.

  3. Relative change - Wikipedia

    en.wikipedia.org/wiki/Relative_change

    A percentage change is a way to express a change in a variable. It represents the relative change between the old value and the new one. [6]For example, if a house is worth $100,000 today and the year after its value goes up to $110,000, the percentage change of its value can be expressed as = = %.

  4. Mean absolute percentage error - Wikipedia

    en.wikipedia.org/wiki/Mean_absolute_percentage_error

    It is a variant of MAPE in which the mean absolute percent errors is treated as a weighted arithmetic mean. Most commonly the absolute percent errors are weighted by the actuals (e.g. in case of sales forecasting, errors are weighted by sales volume). [3] Effectively, this overcomes the 'infinite error' issue. [4]

  5. Mean percentage error - Wikipedia

    en.wikipedia.org/wiki/Mean_percentage_error

    Because actual rather than absolute values of the forecast errors are used in the formula, positive and negative forecast errors can offset each other; as a result, the formula can be used as a measure of the bias in the forecasts.

  6. Propagation of uncertainty - Wikipedia

    en.wikipedia.org/wiki/Propagation_of_uncertainty

    Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables ⁡ (+) = ⁡ + ⁡ + ⁡ (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...

  7. Root mean square deviation - Wikipedia

    en.wikipedia.org/wiki/Root_mean_square_deviation

    In some disciplines, the RMSD is used to compare differences between two things that may vary, neither of which is accepted as the "standard". For example, when measuring the average difference between two time series x 1 , t {\displaystyle x_{1,t}} and x 2 , t {\displaystyle x_{2,t}} , the formula becomes

  8. Errors and residuals - Wikipedia

    en.wikipedia.org/wiki/Errors_and_residuals

    The difference between the height of each man in the sample and the unobservable population mean is a statistical error, whereas; The difference between the height of each man in the sample and the observable sample mean is a residual.

  9. Deviation (statistics) - Wikipedia

    en.wikipedia.org/wiki/Deviation_(statistics)

    Another approach to nondimensionalization focuses on scaling by location rather than dispersion. The percent deviation offers an illustration of this method, calculated as the difference between the observed value and the accepted value, divided by the accepted value, and then multiplied by 100%.