Search results
Results From The WOW.Com Content Network
Direct projection of 3-sphere into 3D space and covered with surface grid, showing structure as stack of 3D spheres (2-spheres) In mathematics, a hypersphere or 3-sphere is a 4-dimensional analogue of a sphere, and is the 3-dimensional n-sphere. In 4-dimensional Euclidean space, it is the set of points equidistant from a fixed central point.
A sphere (from Greek σφαῖρα, sphaîra) [1] is a geometrical object that is a three-dimensional analogue to a two-dimensional circle.Formally, a sphere is the set of points that are all at the same distance r from a given point in three-dimensional space. [2]
In spherical geometry, the basic concepts are point and great circle. However, two great circles on a plane intersect in two antipodal points, unlike coplanar lines in Elliptic geometry. In the extrinsic 3-dimensional picture, a great circle is the intersection of the sphere with any plane through the center.
In geometry, two or more objects are said to be concentric when they share the same center. Any pair of (possibly unalike) objects with well-defined centers can be concentric, including circles , spheres , regular polygons , regular polyhedra , parallelograms, cones, conic sections, and quadrics.
Finite spherical symmetry groups are also called point groups in three dimensions.There are five fundamental symmetry classes which have triangular fundamental domains: dihedral, cyclic, tetrahedral, octahedral, and icosahedral symmetry.
In geometry, a three-dimensional space (3D space, 3-space or, rarely, tri-dimensional space) is a mathematical space in which three values (coordinates) are required to determine the position of a point. Most commonly, it is the three-dimensional Euclidean space, that is, the Euclidean space of dimension three, which models physical space.
In the mathematical field of geometric topology, the Poincaré conjecture (UK: / ˈ p w æ̃ k ær eɪ /, [2] US: / ˌ p w æ̃ k ɑː ˈ r eɪ /, [3] [4] French: [pwɛ̃kaʁe]) is a theorem about the characterization of the 3-sphere, which is the hypersphere that bounds the unit ball in four-dimensional space.
[3] [18] The first work of knot theory to include the Borromean rings was a catalog of knots and links compiled in 1876 by Peter Tait. [3] In recreational mathematics, the Borromean rings were popularized by Martin Gardner, who featured Seifert surfaces for the Borromean rings in his September 1961 "Mathematical Games" column in Scientific ...