When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Consistent and inconsistent equations - Wikipedia

    en.wikipedia.org/wiki/Consistent_and...

    If a system of equations is inconsistent, then the equations cannot be true together leading to contradictory information, such as the false statements 2 = 1, or + = and + = (which implies 5 = 6). Both types of equation system, inconsistent and consistent, can be any of overdetermined (having more equations than unknowns), underdetermined ...

  3. Indeterminate system - Wikipedia

    en.wikipedia.org/wiki/Indeterminate_system

    An indeterminate system by definition is consistent, in the sense of having at least one solution. [3] For a system of linear equations, the number of equations in an indeterminate system could be the same as the number of unknowns, less than the number of unknowns (an underdetermined system ), or greater than the number of unknowns (an ...

  4. Gödel's incompleteness theorems - Wikipedia

    en.wikipedia.org/wiki/Gödel's_incompleteness...

    Gödel's original statement and proof of the incompleteness theorem requires the assumption that the system is not just consistent but ω-consistent. A system is ω-consistent if it is not ω-inconsistent, and is ω-inconsistent if there is a predicate P such that for every specific natural number m the system proves ~P(m), and yet the system ...

  5. Underdetermined system - Wikipedia

    en.wikipedia.org/wiki/Underdetermined_system

    An underdetermined linear system has either no solution or infinitely many solutions. For example, + + = + + = is an underdetermined system without any solution; any system of equations having no solution is said to be inconsistent. On the other hand, the system

  6. Consistency - Wikipedia

    en.wikipedia.org/wiki/Consistency

    Such a theory is consistent if and only if it does not prove a particular sentence, called the Gödel sentence of the theory, which is a formalized statement of the claim that the theory is indeed consistent. Thus the consistency of a sufficiently strong, recursively enumerable, consistent theory of arithmetic can never be proven in that system ...

  7. System of linear equations - Wikipedia

    en.wikipedia.org/wiki/System_of_linear_equations

    The equations 3x + 2y = 6 and 3x + 2y = 12 are inconsistent. A linear system is inconsistent if it has no solution, and otherwise, it is said to be consistent. [7] When the system is inconsistent, it is possible to derive a contradiction from the equations, that may always be rewritten as the statement 0 = 1. For example, the equations

  8. Axiomatic system - Wikipedia

    en.wikipedia.org/wiki/Axiomatic_system

    An axiomatic system is said to be consistent if it lacks contradiction.That is, it is impossible to derive both a statement and its negation from the system's axioms. Consistency is a key requirement for most axiomatic systems, as the presence of contradiction would allow any statement to be proven (principle of explo

  9. Gentzen's consistency proof - Wikipedia

    en.wikipedia.org/wiki/Gentzen's_consistency_proof

    Gentzen's consistency proof is a result of proof theory in mathematical logic, published by Gerhard Gentzen in 1936. It shows that the Peano axioms of first-order arithmetic do not contain a contradiction (i.e. are "consistent"), as long as a certain other system used in the proof does not contain any contradictions either.