Search results
Results From The WOW.Com Content Network
It is ideally spatially unstructured and temporally unstructured, in a steady state defined by the rates of nutrient supply and bacterial growth. In comparison to batch culture, bacteria are maintained in exponential growth phase, and the growth rate of the bacteria is known. Related devices include turbidostats and auxostats.
The Monod equation is a mathematical model for the growth of microorganisms. It is named for Jacques Monod (1910–1976, a French biochemist, Nobel Prize in Physiology or Medicine in 1965), who proposed using an equation of this form to relate microbial growth rates in an aqueous environment to the concentration of a limiting nutrient.
When calculating or discussing relative growth rate, it is important to pay attention to the units of time being considered. [ 2 ] For example, if an initial population of S 0 bacteria doubles every twenty minutes, then at time interval t {\displaystyle t} it is given by solving the equation:
Corylus americana is cultivated as an ornamental plant for native plant gardens, and in wildlife gardens to attract and keep fauna in an area. There are cultivated hybrids of Corylus americana with Corylus avellana which aim to combine the larger nuts of the latter with the former's resistance to a North American fungus Cryptosporella anomala. [12]
One equation used to analyze biological exponential growth uses the birth and death rates in a population. If, in a hypothetical population of size N, the birth rates (per capita) are represented as b and death rates (per capita) as d, then the increase or decrease in N during a time period t will be
Figure 1: A bi-phasic bacterial growth curve.. A growth curve is an empirical model of the evolution of a quantity over time. Growth curves are widely used in biology for quantities such as population size or biomass (in population ecology and demography, for population growth analysis), individual body height or biomass (in physiology, for growth analysis of individuals).
Moreover, the function makes use of initial growth rate, which is commonly seen in populations of bacterial and cancer cells, which undergo the log phase and grow rapidly in numbers. Despite its popularity, the function initial rate of tumor growth is difficult to predetermine given the varying microcosms present with a patient, or varying ...
The formation of patterns in the growth of bacterial colonies has extensively been studied experimentally. Resulting morphologies appear to depend on the growth conditions. They include well known morphologies such as dense branched morphology (DBM) or diffusion-limited aggregation (DLA), but much complex patterns and temporal behaviour can be fou