When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Curved spacetime - Wikipedia

    en.wikipedia.org/wiki/Curved_spacetime

    Clocks in a gravitational field do not all run at the same rate. Experiments such as the Pound–Rebka experiment have firmly established curvature of the time component of spacetime. The Pound–Rebka experiment says nothing about curvature of the space component of spacetime. But the theoretical arguments predicting gravitational time ...

  3. Spacetime diagram - Wikipedia

    en.wikipedia.org/wiki/Spacetime_diagram

    A spacetime diagram is a graphical illustration of locations in space at various times, especially in the special theory of relativity.Spacetime diagrams can show the geometry underlying phenomena like time dilation and length contraction without mathematical equations.

  4. Spacetime - Wikipedia

    en.wikipedia.org/wiki/Spacetime

    In physics, spacetime, also called the space-time continuum, is a mathematical model that fuses the three dimensions of space and the one dimension of time into a single four-dimensional continuum. Spacetime diagrams are useful in visualizing and understanding relativistic effects, such as how different observers perceive where and when events ...

  5. Spacetime algebra - Wikipedia

    en.wikipedia.org/wiki/Spacetime_algebra

    In mathematical physics, spacetime algebra (STA) is the application of Clifford algebra Cl 1,3 (R), or equivalently the geometric algebra G(M 4) to physics. Spacetime algebra provides a "unified, coordinate-free formulation for all of relativistic physics, including the Dirac equation, Maxwell equation and General Relativity" and "reduces the mathematical divide between classical, quantum and ...

  6. Maxwell's equations in curved spacetime - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_equations_in...

    This equation is completely coordinate- and metric-independent and says that the electromagnetic flux through a closed two-dimensional surface in space–time is topological, more precisely, depends only on its homology class (a generalization of the integral form of Gauss law and Maxwell–Faraday equation, as the homology class in Minkowski ...

  7. Einstein field equations - Wikipedia

    en.wikipedia.org/wiki/Einstein_field_equations

    The inertial trajectories of particles and radiation in the resulting geometry are then calculated using the geodesic equation. As well as implying local energy–momentum conservation, the EFE reduce to Newton's law of gravitation in the limit of a weak gravitational field and velocities that are much less than the speed of light .

  8. Mathematics of general relativity - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_general...

    For any curve and two points = and = on this curve, an affine connection gives rise to a map of vectors in the tangent space at into vectors in the tangent space at : =,, and () can be computed component-wise by solving the differential equation = () = () where () is the vector tangent to the curve at the point ().

  9. Two-body problem in general relativity - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem_in...

    In uncurved space-time, far from a source of gravity, these geodesics correspond to straight lines; however, they may deviate from straight lines when the space-time is curved. The equation for the geodesic lines is [10] + = where Γ represents the Christoffel symbol and the variable q parametrizes the particle's path through space-time, its so ...