When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Heat transfer coefficient - Wikipedia

    en.wikipedia.org/wiki/Heat_transfer_coefficient

    The heat transfer coefficient has SI units in watts per square meter per kelvin (W/(m 2 K)). The overall heat transfer rate for combined modes is usually expressed in terms of an overall conductance or heat transfer coefficient, U. In that case, the heat transfer rate is: ˙ = where (in SI units):

  3. NTU method - Wikipedia

    en.wikipedia.org/wiki/NTU_Method

    describes heat transfer across a surface = Here, is the overall heat transfer coefficient, is the total heat transfer area, and is the minimum heat capacity rate. To better understand where this definition of NTU comes from, consider the following heat transfer energy balance, which is an extension of the energy balance above:

  4. Logarithmic mean temperature difference - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_mean...

    where (in SI units): Q is the exchanged heat duty , U is the heat transfer coefficient (watts per kelvin per square meter), A is the exchange area. Note that estimating the heat transfer coefficient may be quite complicated.

  5. Thermal conductivity and resistivity - Wikipedia

    en.wikipedia.org/wiki/Thermal_conductivity_and...

    There is also a measure known as the heat transfer coefficient: the quantity of heat that passes per unit time through a unit area of a plate of particular thickness when its opposite faces differ in temperature by one kelvin. [8] In ASTM C168-15, this area-independent quantity is referred to as the "thermal conductance". [9]

  6. Cooling load temperature difference calculation method

    en.wikipedia.org/wiki/Cooling_load_temperature...

    This coefficient accounts for the time lag between the outdoor and indoor temperature peaks. Depending on the properties of the building envelope, a delay is present when observing the amount of heat being transferred inside from the outdoors. The CLF is the cooling load at a given time compared to the heat gain from earlier in the day. [1] [5]

  7. R-value (insulation) - Wikipedia

    en.wikipedia.org/wiki/R-value_(insulation)

    The U-factor or U-value is the overall heat transfer coefficient and can be found by taking the inverse of the R-value. It is a property that describes how well building elements conduct heat per unit area across a temperature gradient.

  8. Nusselt number - Wikipedia

    en.wikipedia.org/wiki/Nusselt_number

    The heat transfer rate can be written using Newton's law of cooling as = (), where h is the heat transfer coefficient and A is the heat transfer surface area. Because heat transfer at the surface is by conduction, the same quantity can be expressed in terms of the thermal conductivity k:

  9. List of thermal conductivities - Wikipedia

    en.wikipedia.org/wiki/List_of_thermal_conductivities

    Mixtures may have variable thermal conductivities due to composition. Note that for gases in usual conditions, heat transfer by advection (caused by convection or turbulence for instance) is the dominant mechanism compared to conduction. This table shows thermal conductivity in SI units of watts per metre-kelvin (W·m −1 ·K −1).