When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Reflexive relation - Wikipedia

    en.wikipedia.org/wiki/Reflexive_relation

    An example of a reflexive relation is the relation "is equal to" on the set of real numbers, since every real number is equal to itself. A reflexive relation is said to have the reflexive property or is said to possess reflexivity. Along with symmetry and transitivity, reflexivity is one of three properties defining equivalence relations.

  3. Relation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Relation_(mathematics)

    A relation that is reflexive, antisymmetric, and transitive. Strict partial order A relation that is irreflexive, asymmetric, and transitive. Total order A relation that is reflexive, antisymmetric, transitive and connected. [20] Strict total order A relation that is irreflexive, asymmetric, transitive and connected. Uniqueness properties: One ...

  4. Reflexive closure - Wikipedia

    en.wikipedia.org/wiki/Reflexive_closure

    A relation is called reflexive if it relates every element of to itself. For example, if X {\displaystyle X} is a set of distinct numbers and x R y {\displaystyle xRy} means " x {\displaystyle x} is less than y {\displaystyle y} ", then the reflexive closure of R {\displaystyle R} is the relation " x {\displaystyle x} is less than or equal to y ...

  5. Equivalence relation - Wikipedia

    en.wikipedia.org/wiki/Equivalence_relation

    A reflexive and symmetric relation is a dependency relation (if finite), and a tolerance relation if infinite. A preorder is reflexive and transitive. A congruence relation is an equivalence relation whose domain X {\displaystyle X} is also the underlying set for an algebraic structure , and which respects the additional structure.

  6. Total order - Wikipedia

    en.wikipedia.org/wiki/Total_order

    A binary relation that is antisymmetric, transitive, and reflexive (but not necessarily total) is a partial order. A group with a compatible total order is a totally ordered group. There are only a few nontrivial structures that are (interdefinable as) reducts of a total order. Forgetting the orientation results in a betweenness relation.

  7. Szpilrajn extension theorem - Wikipedia

    en.wikipedia.org/wiki/Szpilrajn_Extension_Theorem

    A binary relation on a set is formally defined as a set of ordered pairs (,) of elements of , and (,) is often abbreviated as .. A relation is reflexive if holds for every element ; it is transitive if imply for all ,,; it is antisymmetric if imply = for all ,; and it is a connex relation if holds for all ,.

  8. Antisymmetric relation - Wikipedia

    en.wikipedia.org/wiki/Antisymmetric_relation

    A relation can be both symmetric and antisymmetric (in this case, it must be coreflexive), and there are relations which are neither symmetric nor antisymmetric (for example, the "preys on" relation on biological species). Antisymmetry is different from asymmetry: a relation is asymmetric if and only if it is antisymmetric and irreflexive.

  9. Homogeneous relation - Wikipedia

    en.wikipedia.org/wiki/Homogeneous_relation

    For example, the relation over the integers in which each odd number is related to itself is a coreflexive relation. The equality relation is the only example of a both reflexive and coreflexive relation, and any coreflexive relation is a subset of the identity relation. Left quasi-reflexive for all x, y ∈ X, if xRy then xRx. Right quasi ...