Search results
Results From The WOW.Com Content Network
DNase I contains four ion-binding pockets, and requires Ca 2+ and Mg 2+ for hydrolyzing double-stranded DNA. [5] Two of the sites strongly bind Ca 2+ while the other two coordinate Mg 2+ . Little has been published on the number and location of the Mg 2+ binding sites, although it has been proposed that Mg 2+ is located near the catalytic ...
Deoxyribonuclease I (usually called DNase I), is an endonuclease of the DNase family coded by the human gene DNASE1. [5] DNase I is a nuclease that cleaves DNA preferentially at phosphodiester linkages adjacent to a pyrimidine nucleotide , yielding 5'-phosphate-terminated polynucleotides with a free hydroxyl group on position 3', on average ...
Structure of double-stranded DNA, the product of DNA synthesis, showing individual nucleotide units and bonds. DNA synthesis is the natural or artificial creation of deoxyribonucleic acid (DNA) molecules. DNA is a macromolecule made up of nucleotide units, which are linked by covalent bonds and hydrogen bonds, in a repeating structure.
Deoxyribonuclease II (EC 3.1.22.1, DNase II, pancreatic DNase II, deoxyribonucleate 3'-nucleotidohydrolase, pancreatic DNase II, acid deoxyribonuclease, acid DNase) is an endonuclease that hydrolyzes phosphodiester linkages of deoxyribonucleotide in native and denatured DNA, yielding products with 3'-phosphates and 5'-hydroxyl ends, which occurs as a result of single-strand cleaving mechanism. [1]
There are hundreds of restriction endonucleases known, each attacking a different restriction site. The DNA fragments cleaved by the same endonuclease can be joined regardless of the origin of the DNA. Such DNA is called recombinant DNA; DNA formed by the joining of genes into new combinations. [4]
DNA occurs in nature as a right-handed double helix and in asymmetric synthesis a chiral catalyst is a valuable tool in the synthesis of chiral molecules from an achiral source. In one application an artificial DNA catalyst was prepared by attaching a copper ion to it through a spacer. [ 46 ]
This exonuclease requires Mg 2+ in order to function and works at higher temperatures than exonuclease I. [7] Exonuclease V is a 3' to 5' hydrolyzing enzyme that catalyzes linear double-stranded DNA and single-stranded DNA, which requires Ca2+. [8] This enzyme is extremely important in the process of homologous recombination.
These histone cores are composed of 8 subunits, two each of H2A, H2B, H3 and H4 histones. This protein complex forms a cylindrical shape that dsDNA wraps around with approximately 147 base pairs. Nucleosomes are formed as a beginning step for DNA compaction that also contributes to structural support as well as serves functional roles. [2]