Search results
Results From The WOW.Com Content Network
Start by setting [4] = = = + Then iterate + = + + = (+) + + = (+ +) + + + Then p k converges quadratically to π; that is, each iteration approximately doubles the number of correct digits.The algorithm is not self-correcting; each iteration must be performed with the desired number of correct digits for π 's final result.
The Chudnovsky algorithm is a fast method for calculating the digits of π, based on Ramanujan's π formulae.Published by the Chudnovsky brothers in 1988, [1] it was used to calculate π to a billion decimal places.
The formula is a special case of the Euler–Boole summation formula for alternating series, providing yet another example of a convergence acceleration technique that can be applied to the Leibniz series. In 1992, Jonathan Borwein and Mark Limber used the first thousand Euler numbers to calculate π to 5,263 decimal places with the Leibniz ...
A stopping time can define a -algebra , the so-called stopping time sigma-algebra, which in a filtered probability space describes the information up to the random time in the sense that, if the filtered probability space is interpreted as a random experiment, the maximum information that can be found out about the experiment from arbitrarily ...
Found several rapidly converging infinite series of π, which can compute 8 decimal places of π with each term in the series. Since the 1980s, his series have become the basis for the fastest algorithms currently used by Yasumasa Kanada and the Chudnovsky brothers to compute π. 1946 D. F. Ferguson: Made use of a desk calculator [24] 620: 1947 ...
The first expansion is the McKay–Thompson series of class 1A (OEIS: A007240) with a(0) = 744. Note that, as first noticed by J. McKay , the coefficient of the linear term of j ( τ ) almost equals 196883, which is the degree of the smallest nontrivial irreducible representation of the monster group , a relationship called monstrous moonshine .
Each term of this modified series is a rational function with its poles at = in the complex plane, the same place where the arctangent function has its poles. By contrast, a polynomial such as the Taylor series for arctangent forces all of its poles to infinity.
In computer graphics and real-time rendering, some of the sigmoid functions are used to blend colors or geometry between two values, smoothly and without visible seams or discontinuities. Titration curves between strong acids and strong bases have a sigmoid shape due to the logarithmic nature of the pH scale .