When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Table of congruences - Wikipedia

    en.wikipedia.org/wiki/Table_of_congruences

    Clement's congruence-based theorem characterizes the twin primes pairs of the form (, +) through the following conditions: [()! +] ((+)), +P. A. Clement's original 1949 paper [2] provides a proof of this interesting elementary number theoretic criteria for twin primality based on Wilson's theorem.

  3. Gauss congruence - Wikipedia

    en.wikipedia.org/wiki/Gauss_congruence

    In mathematics, Gauss congruence is a property held by certain sequences of integers, including the Lucas numbers and the divisor sum sequence. Sequences satisfying this property are also known as Dold sequences, Fermat sequences, Newton sequences, and realizable sequences. [ 1 ]

  4. Congruence relation - Wikipedia

    en.wikipedia.org/wiki/Congruence_relation

    The lattice Con(A) of all congruence relations on an algebra A is algebraic. John M. Howie described how semigroup theory illustrates congruence relations in universal algebra: In a group a congruence is determined if we know a single congruence class, in particular if we know the normal subgroup which is the class containing the identity.

  5. Equivalence class - Wikipedia

    en.wikipedia.org/wiki/Equivalence_class

    For example, in modular arithmetic, for every integer m greater than 1, the congruence modulo m is an equivalence relation on the integers, for which two integers a and b are equivalent—in this case, one says congruent—if m divides ; this is denoted ().

  6. Multiplicative group of integers modulo n - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_group_of...

    Integers in the same congruence class a ≡ b (mod n) satisfy gcd(a, n) = gcd(b, n); hence one is coprime to n if and only if the other is. Thus the notion of congruence classes modulo n that are coprime to n is well-defined. Since gcd(a, n) = 1 and gcd(b, n) = 1 implies gcd(ab, n) = 1, the set of classes coprime to n is closed under ...

  7. Congruence of squares - Wikipedia

    en.wikipedia.org/wiki/Congruence_of_squares

    For example, in addition to relations where y factors completely in the factor base, the "large prime" variant also collects "partial relations" where y factors completely except for one larger factor. A second partial relation with the same larger factor can be multiplied by the first to produce a "complete relation".

  8. Euler's theorem - Wikipedia

    en.wikipedia.org/wiki/Euler's_theorem

    The converse of Euler's theorem is also true: if the above congruence is true, then and must be coprime. The theorem is further generalized by some of Carmichael's theorems . The theorem may be used to easily reduce large powers modulo n {\displaystyle n} .

  9. Isometry - Wikipedia

    en.wikipedia.org/wiki/Isometry

    In mathematics, an isometry (or congruence, or congruent transformation) is a distance-preserving transformation between metric spaces, usually assumed to be bijective. [ a ] The word isometry is derived from the Ancient Greek : ἴσος isos meaning "equal", and μέτρον metron meaning "measure".