Search results
Results From The WOW.Com Content Network
Triangle with the area 6, a congruent number. In number theory, a congruent number is a positive integer that is the area of a right triangle with three rational number sides. [1] [2] A more general definition includes all positive rational numbers with this property. [3] The sequence of (integer) congruent numbers starts with
A congruent number is defined as the area of a right triangle with rational sides. Because every congruum can be obtained (using the parameterized solution) as the area of a Pythagorean triangle, it follows that every congruum is congruent. Every congruent number is a congruum multiplied by the square of a rational number. [7]
Tunnell's theorem states that supposing n is a congruent number, if n is odd then 2A n = B n and if n is even then 2C n = D n. Conversely, if the Birch and Swinnerton-Dyer conjecture holds true for elliptic curves of the form y 2 = x 3 − n 2 x {\displaystyle y^{2}=x^{3}-n^{2}x} , these equalities are sufficient to conclude that n is a ...
Calculus and Analysis; ... Number theory is a branch of pure mathematics devoted primarily to the study of ... and every prime congruent to 1 modulo 4 can be written ...
This statement, due to Tunnell's theorem (Tunnell 1983), is related to the fact that n is a congruent number if and only if the elliptic curve y 2 = x 3 − n 2 x has a rational point of infinite order (thus, under the Birch and Swinnerton-Dyer conjecture, its L-function has a zero at 1). The interest in this statement is that the condition is ...
Time-keeping on this clock uses arithmetic modulo 12. Adding 4 hours to 9 o'clock gives 1 o'clock, since 13 is congruent to 1 modulo 12. In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus.
The proof of this statement requires some calculus and analytic number theory . The particular case a = 1 (i.e., concerning the primes that are congruent to 1 modulo some n) can be proven by analyzing the splitting behavior of primes in cyclotomic extensions, without making use of calculus (Neukirch 1999, §VII.6).
In number theory, Euler's theorem (also known as the Fermat–Euler theorem or Euler's totient theorem) states that, if n and a are coprime positive integers, then () is congruent to modulo n, where denotes Euler's totient function; that is