Search results
Results From The WOW.Com Content Network
O–C–O: 180° , [3] decreasing to as low as 163° at higher temperature and/or pressure [4] Magnetic susceptibility: −0.49×10^−6 cm^3/mol Surface tension: 4.34 dyn/cm at 20 °C and equilibrium pressure Viscosity [5] of liquid at equilibrium pressure 0.0925 mPa·s at 5 °C 0.0852 mPa·s at 10 °C 0.0712 mPa·s at 20 °C 0.0625 mPa·s at ...
English: Phase diagram of CO2 (carbon dioxide). X axis is temperature in kelvin; Y axis is pressure in bar. X axis is temperature in kelvin; Y axis is pressure in bar. Esperanto: Premo-temperatura fazodiagramo de karbona duoksido
The following other wikis use this file: Usage on bg.wikipedia.org Въглероден диоксид; Usage on bn.wikipedia.org দশা সূত্র
The higher the energy density of the fuel, the more energy may be stored or transported for the same amount of volume. The energy of a fuel per unit mass is called its specific energy. The adjacent figure shows the gravimetric and volumetric energy density of some fuels and storage technologies (modified from the Gasoline article).
The pressure on a pressure-temperature diagram (such as the water phase diagram shown above) is the partial pressure of the substance in question. A phase diagram in physical chemistry , engineering , mineralogy , and materials science is a type of chart used to show conditions (pressure, temperature, etc.) at which thermodynamically distinct ...
Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...
Once two of the three reduced properties are found, the compressibility chart can be used. In a compressibility chart, reduced pressure is on the x-axis and Z is on the y-axis. When given the reduced pressure and temperature, find the given pressure on the x-axis. From there, move up on the chart until the given reduced temperature is found.
In gas dynamics we are interested in the local relations between pressure, density and temperature, rather than considering a fixed quantity of gas. By considering the density ρ = M / V {\displaystyle \rho =M/V} as the inverse of the volume for a unit mass, we can take ρ = 1 / V {\displaystyle \rho =1/V} in these relations.