Search results
Results From The WOW.Com Content Network
A quantity undergoing exponential decay. Larger decay constants make the quantity vanish much more rapidly. This plot shows decay for decay constant (λ) of 25, 5, 1, 1/5, and 1/25 for x from 0 to 5. A quantity is subject to exponential decay if it decreases at a rate proportional to its current value.
Thus, the Fisher information may be seen as the curvature of the support curve (the graph of the log-likelihood). Near the maximum likelihood estimate, low Fisher information therefore indicates that the maximum appears "blunt", that is, the maximum is shallow and there are many nearby values with a similar log-likelihood. Conversely, high ...
The quantum Fisher information is a central quantity in quantum metrology and is the quantum analogue of the classical Fisher information. [1] [2] [3 ... for example ...
In probability theory and statistics, the exponential distribution or negative exponential distribution is the probability distribution of the distance between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate; the distance parameter could be any meaningful mono-dimensional measure of the process, such as time ...
Exponential diophantine equation; Exponential dispersion model; Exponential distribution; Exponential error; Exponential factorial; Exponential family; Exponential field; Exponential formula; Exponential function; Exponential generating function; Exponential-Golomb coding; Exponential growth; Exponential hierarchy; Exponential integral ...
In statistics, the observed information, or observed Fisher information, is the negative of the second derivative (the Hessian matrix) of the "log-likelihood" (the logarithm of the likelihood function). It is a sample-based version of the Fisher information.
In information theory, the principle of minimum Fisher information (MFI) is a variational principle which, when applied with the proper constraints needed to reproduce empirically known expectation values, determines the best probability distribution that characterizes the system. (See also Fisher information.)
It states that the precision of any unbiased estimator is at most the Fisher information; or (equivalently) the reciprocal of the Fisher information is a lower bound on its variance. An unbiased estimator that achieves this bound is said to be (fully) efficient .