When.com Web Search

  1. Ad

    related to: contravariant basis vectors chart with points labeled graph calculator 3

Search results

  1. Results From The WOW.Com Content Network
  2. Covariance and contravariance of vectors - Wikipedia

    en.wikipedia.org/wiki/Covariance_and_contra...

    The first is that vectors whose components are covariant (called covectors or 1-forms) actually pull back under smooth functions, meaning that the operation assigning the space of covectors to a smooth manifold is actually a contravariant functor. Likewise, vectors whose components are contravariant push forward under smooth mappings, so the ...

  3. Curvilinear coordinates - Wikipedia

    en.wikipedia.org/wiki/Curvilinear_coordinates

    Consequently, a general curvilinear coordinate system has two sets of basis vectors for every point: {b 1, b 2, b 3} is the contravariant basis, and {b 1, b 2, b 3} is the covariant (a.k.a. reciprocal) basis. The covariant and contravariant basis vectors types have identical direction for orthogonal curvilinear coordinate systems, but as usual ...

  4. Mathematics of general relativity - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_general...

    At each point of a manifold, the tangent and cotangent spaces to the manifold at that point may be constructed. Vectors (sometimes referred to as contravariant vectors) are defined as elements of the tangent space and covectors (sometimes termed covariant vectors, but more commonly dual vectors or one-forms) are elements of the cotangent space.

  5. Pullback (differential geometry) - Wikipedia

    en.wikipedia.org/wiki/Pullback_(differential...

    In particular, if is a diffeomorphism between open subsets of and , viewed as a change of coordinates (perhaps between different charts on a manifold ), then the pullback and pushforward describe the transformation properties of covariant and contravariant tensors used in more traditional (coordinate dependent) approaches to the subject.

  6. Tensors in curvilinear coordinates - Wikipedia

    en.wikipedia.org/wiki/Tensors_in_curvilinear...

    As before, , are covariant basis vectors and b i, b j are contravariant basis vectors. Also, let (e 1, e 2, e 3) be a background, fixed, Cartesian basis. A list of orthogonal curvilinear coordinates is given below.

  7. Covariant transformation - Wikipedia

    en.wikipedia.org/wiki/Covariant_transformation

    The explicit form of a covariant transformation is best introduced with the transformation properties of the derivative of a function. Consider a scalar function f (like the temperature at a location in a space) defined on a set of points p, identifiable in a given coordinate system , =,, … (such a collection is called a manifold).

  8. Skew coordinates - Wikipedia

    en.wikipedia.org/wiki/Skew_coordinates

    A system of skew coordinates is a curvilinear coordinate system where the coordinate surfaces are not orthogonal, [1] in contrast to orthogonal coordinates.. Skew coordinates tend to be more complicated to work with compared to orthogonal coordinates since the metric tensor will have nonzero off-diagonal components, preventing many simplifications in formulas for tensor algebra and tensor ...

  9. Christoffel symbols - Wikipedia

    en.wikipedia.org/wiki/Christoffel_symbols

    Such charts allow the standard vector basis (,,) on to be pulled back to a vector basis on the tangent space of . This is done as follows. This is done as follows. Given some arbitrary real function f : M → R {\displaystyle f:M\to \mathbb {R} } , the chart allows a gradient to be defined: