Search results
Results From The WOW.Com Content Network
In probability and statistics, a mixture distribution is the probability distribution of a random variable that is derived from a collection of other random variables as follows: first, a random variable is selected by chance from the collection according to given probabilities of selection, and then the value of the selected random variable is realized.
In probability and statistics, a compound probability distribution (also known as a mixture distribution or contagious distribution) is the probability distribution that results from assuming that a random variable is distributed according to some parametrized distribution, with (some of) the parameters of that distribution themselves being random variables.
In probability theory and statistics, a mixture is a probabilistic combination of two or more probability distributions. [1] The concept arises mostly in two contexts: A mixture defining a new probability distribution from some existing ones, as in a mixture distribution or a compound distribution. Here a major problem often is to derive the ...
A typical finite-dimensional mixture model is a hierarchical model consisting of the following components: . N random variables that are observed, each distributed according to a mixture of K components, with the components belonging to the same parametric family of distributions (e.g., all normal, all Zipfian, etc.) but with different parameters
The Irwin–Hall distribution is the distribution of the sum of n independent random variables, each of which having the uniform distribution on [0,1]. The Bates distribution is the distribution of the mean of n independent random variables, each of which having the uniform distribution on [0,1]. The logit-normal distribution on (0,1).
A discrete probability distribution is the probability distribution of a random variable that can take ... Such quantities can be modeled using a mixture distribution.
Different texts (and even different parts of this article) adopt slightly different definitions for the negative binomial distribution. They can be distinguished by whether the support starts at k = 0 or at k = r, whether p denotes the probability of a success or of a failure, and whether r represents success or failure, [1] so identifying the specific parametrization used is crucial in any ...
Mixed logit can choose any distribution for the random coefficients, unlike probit which is limited to the normal distribution. It is called "mixed logit" because the choice probability is a mixture of logits, with f {\displaystyle f} as the mixing distribution. [ 2 ]