Search results
Results From The WOW.Com Content Network
Malfatti's assumption that the two problems are equivalent is incorrect. Lob and Richmond (), who went back to the original Italian text, observed that for some triangles a larger area can be achieved by a greedy algorithm that inscribes a single circle of maximal radius within the triangle, inscribes a second circle within one of the three remaining corners of the triangle, the one with the ...
Langley's Adventitious Angles Solution to Langley's 80-80-20 triangle problem. Langley's Adventitious Angles is a puzzle in which one must infer an angle in a geometric diagram from other given angles. It was posed by Edward Mann Langley in The Mathematical Gazette in 1922. [1] [2]
Solution of triangles (Latin: solutio triangulorum) is the main trigonometric problem of finding the characteristics of a triangle (angles and lengths of sides), when some of these are known. The triangle can be located on a plane or on a sphere. Applications requiring triangle solutions include geodesy, astronomy, construction, and navigation.
The apparent triangles formed from the figures are 13 units wide and 5 units tall, so it appears that the area should be S = 13×5 / 2 = 32.5 units. However, the blue triangle has a ratio of 5:2 (=2.5), while the red triangle has the ratio 8:3 (≈2.667), so the apparent combined hypotenuse in each figure is actually bent.
The optimal packing of 15 circles in a square Optimal solutions have been proven for n ≤ 30. Packing circles in a rectangle; Packing circles in an isosceles right triangle - good estimates are known for n < 300. Packing circles in an equilateral triangle - Optimal solutions are known for n < 13, and conjectures are available for n < 28. [14]
The two problems differ already for =, where Roberts's theorem guarantees that three triangles will exist, but the solution to the Kobon triangle problem has five triangles. [ 1 ] Roberts's theorem can be generalized from simple line arrangements to some non-simple arrangements, to arrangements in the projective plane rather than in the ...
Solution to puzzle with 3 L and 5 L jugs, a tap and a drain Two solutions on a Cartesian grid, the upper one equivalent to the diagram on the left. The rules are sometimes formulated by adding a tap (a source "jug" with infinite water) and a sink (a drain "jug" that accepts any amount of water without limit).
This application was the motivation for Paul Erdős to find his solution for the no-three-in-line problem. [13] It remained the best area lower bound known for the Heilbronn triangle problem from 1951 until 1982, when it was improved by a logarithmic factor using a construction that was not based on the no-three-in-line problem. [14]