When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Malfatti circles - Wikipedia

    en.wikipedia.org/wiki/Malfatti_circles

    Malfatti's assumption that the two problems are equivalent is incorrect. Lob and Richmond (), who went back to the original Italian text, observed that for some triangles a larger area can be achieved by a greedy algorithm that inscribes a single circle of maximal radius within the triangle, inscribes a second circle within one of the three remaining corners of the triangle, the one with the ...

  3. Langley's Adventitious Angles - Wikipedia

    en.wikipedia.org/wiki/Langley's_Adventitious_Angles

    Langley's Adventitious Angles Solution to Langley's 80-80-20 triangle problem. Langley's Adventitious Angles is a puzzle in which one must infer an angle in a geometric diagram from other given angles. It was posed by Edward Mann Langley in The Mathematical Gazette in 1922. [1] [2]

  4. Solution of triangles - Wikipedia

    en.wikipedia.org/wiki/Solution_of_triangles

    Solution of triangles (Latin: solutio triangulorum) is the main trigonometric problem of finding the characteristics of a triangle (angles and lengths of sides), when some of these are known. The triangle can be located on a plane or on a sphere. Applications requiring triangle solutions include geodesy, astronomy, construction, and navigation.

  5. Missing square puzzle - Wikipedia

    en.wikipedia.org/wiki/Missing_square_puzzle

    The apparent triangles formed from the figures are 13 units wide and 5 units tall, so it appears that the area should be S = ⁠ 13×5 / 2 ⁠ = 32.5 units. However, the blue triangle has a ratio of 5:2 (=2.5), while the red triangle has the ratio 8:3 (≈2.667), so the apparent combined hypotenuse in each figure is actually bent.

  6. Packing problems - Wikipedia

    en.wikipedia.org/wiki/Packing_problems

    The optimal packing of 15 circles in a square Optimal solutions have been proven for n ≤ 30. Packing circles in a rectangle; Packing circles in an isosceles right triangle - good estimates are known for n < 300. Packing circles in an equilateral triangle - Optimal solutions are known for n < 13, and conjectures are available for n < 28. [14]

  7. Roberts's triangle theorem - Wikipedia

    en.wikipedia.org/wiki/Roberts's_triangle_theorem

    The two problems differ already for =, where Roberts's theorem guarantees that three triangles will exist, but the solution to the Kobon triangle problem has five triangles. [ 1 ] Roberts's theorem can be generalized from simple line arrangements to some non-simple arrangements, to arrangements in the projective plane rather than in the ...

  8. Water pouring puzzle - Wikipedia

    en.wikipedia.org/wiki/Water_pouring_puzzle

    Solution to puzzle with 3 L and 5 L jugs, a tap and a drain Two solutions on a Cartesian grid, the upper one equivalent to the diagram on the left. The rules are sometimes formulated by adding a tap (a source "jug" with infinite water) and a sink (a drain "jug" that accepts any amount of water without limit).

  9. No-three-in-line problem - Wikipedia

    en.wikipedia.org/wiki/No-three-in-line_problem

    This application was the motivation for Paul Erdős to find his solution for the no-three-in-line problem. [13] It remained the best area lower bound known for the Heilbronn triangle problem from 1951 until 1982, when it was improved by a logarithmic factor using a construction that was not based on the no-three-in-line problem. [14]