Search results
Results From The WOW.Com Content Network
Cell-free protein synthesis, also known as in vitro protein synthesis or CFPS, is the production of protein using biological machinery in a cell-free system, that is, without the use of living cells. The in vitro protein synthesis environment is not constrained by a cell wall or homeostasis conditions necessary to maintain cell viability. [ 1 ]
In vitro biosystems can be easily controlled and accessed without membranes. [16] Notably, in work leading to a Nobel prize the Nirenberg and Matthaei experiment used a cell-free system, of the cell extract-based type, to incorporate chosen amino acids tagged radioactively into synthesized proteins with 30S extracted from E. coli .
In vitro and in response to specific cocktails of hormones (mainly auxins and cytokinins), most plant tissues can de-differentiate and form a mass of dividing totipotent stem cells called a callus. Organogenesis can then occur from those cells. The type of organ that is formed depends on the relative concentrations of the hormones in the medium.
The intermediate mesoderm connects the paraxial mesoderm with the lateral plate mesoderm, and differentiates into urogenital structures. [12] In upper thoracic and cervical regions, this forms the nephrotomes. In caudal regions, it forms the nephrogenic cord. It also helps to develop the excretory units of the urinary system and the gonads. [4]
This can occur "in vitro" in embryoid bodies (EB) derived from embryonic stem cells; this process in EB is similar to "in vivo" vasculogenesis. Important signaling factors for vasculogenesis are TGF-β , BMP4 , and VEGF , all of which promote pluripotent stem cells to differentiate into mesoderm, endothelial progenitor cells, and then into ...
Intermediate mesoderm or intermediate mesenchyme is a narrow section of the mesoderm (one of the three primary germ layers) located between the paraxial mesoderm and the lateral plate of the developing embryo. [1] The intermediate mesoderm develops into vital parts of the urogenital system (kidneys, gonads and respective tracts).
The mesoderm cells in the limb bud that come from the lateral plate mesoderm will eventually differentiate into the developing limb's connective tissues, such as cartilage, bone, and tendon. [3] Moreover, the mesoderm cells that come from the somites will eventually differentiate into the myogenic cells of the limb muscles. [3]
The mesenchyme originates from the mesoderm. [6] From the mesoderm, the mesenchyme appears as an embryologically primitive "soup". This "soup" exists as a combination of the mesenchymal cells plus serous fluid plus the many different tissue proteins. Serous fluid is typically stocked with the many serous elements, such as sodium and chloride.