Search results
Results From The WOW.Com Content Network
In statistics, in the theory relating to sampling from finite populations, the sampling probability (also known as inclusion probability) of an element or member of the population, is its probability of becoming part of the sample during the drawing of a single sample. [1] For example, in simple random sampling the probability of a particular ...
In the given example, there are 12 = 2(3!) permutations with property P 1, 6 = 3! permutations with property P 2 and no permutations have properties P 3 or P 4 as there are no restrictions for these two elements. The number of permutations satisfying the restrictions is thus: 4! − (12 + 6 + 0 + 0) + (4) = 24 − 18 + 4 = 10.
In statistics, a k-th percentile, also known as percentile score or centile, is a score below which a given percentage k of scores in its frequency distribution falls ("exclusive" definition) or a score at or below which a given percentage falls ("inclusive" definition); i.e. a score in the k-th percentile would be above approximately k% of all scores in its set.
The zeta distribution has uses in applied statistics and statistical mechanics, and perhaps may be of interest to number theorists. It is the Zipf distribution for an infinite number of elements. The Hardy distribution, which describes the probabilities of the hole scores for a given golf player.
For example, rolling a die can produce six possible results. One collection of possible results gives an odd number on the die. Thus, the subset {1,3,5} is an element of the power set of the sample space of dice rolls. These collections are called "events". In this case, {1,3,5} is the event that the die falls on some odd number.
A probability function, , which assigns, to each event in the event space, a probability, which is a number between 0 and 1 (inclusive). In order to provide a model of probability, these elements must satisfy probability axioms. In the example of the throw of a standard die,
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The events "even" (2,4 or 6) and "not-6" (1,2,3,4, or 5) are also collectively exhaustive but not mutually exclusive. In some forms of mutual exclusion only one event can ever occur, whether collectively exhaustive or not. For example, tossing a particular biscuit for a group of several dogs cannot be repeated, no matter which dog snaps it up.