Search results
Results From The WOW.Com Content Network
In probability theory and statistics, the covariance function describes how much two random variables change together (their covariance) with varying spatial or temporal separation. For a random field or stochastic process Z ( x ) on a domain D , a covariance function C ( x , y ) gives the covariance of the values of the random field at the two ...
In statistics, the Matérn covariance, also called the Matérn kernel, [1] is a covariance function used in spatial statistics, geostatistics, machine learning, image analysis, and other applications of multivariate statistical analysis on metric spaces. It is named after the Swedish forestry statistician Bertil Matérn. [2]
Note that although the covariance matrix S generates many eigenfaces, only a fraction of those are needed to represent the majority of the faces. For example, to represent 95% of the total variation of all face images, only the first 43 eigenfaces are needed. To calculate this result, implement the following code:
3 Example code in MATLAB ... run with covariance matrix adaptation on a simple two-dimensional problem. ... = 1e3 * N ^ 2; % stop after stopeval number of function ...
As an example, the estimated 2-dimensional position of an object of interest might be represented by a mean position vector, [,], with an uncertainty given in the form of a 2x2 covariance matrix giving the variance in , the variance in , and the cross covariance between the two. A covariance that is zero implies that there is no uncertainty or ...
If () is a general scalar-valued function of a normal vector, its probability density function, cumulative distribution function, and inverse cumulative distribution function can be computed with the numerical method of ray-tracing (Matlab code). [17]
Throughout this article, boldfaced unsubscripted and are used to refer to random vectors, and Roman subscripted and are used to refer to scalar random variables.. If the entries in the column vector = (,, …,) are random variables, each with finite variance and expected value, then the covariance matrix is the matrix whose (,) entry is the covariance [1]: 177 ...
The sample covariance matrix (SCM) is an unbiased and efficient estimator of the covariance matrix if the space of covariance matrices is viewed as an extrinsic convex cone in R p×p; however, measured using the intrinsic geometry of positive-definite matrices, the SCM is a biased and inefficient estimator. [1]