When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Matérn covariance function - Wikipedia

    en.wikipedia.org/wiki/Matérn_covariance_function

    In statistics, the Matérn covariance, also called the Matérn kernel, [1] is a covariance function used in spatial statistics, geostatistics, machine learning, image analysis, and other applications of multivariate statistical analysis on metric spaces. It is named after the Swedish forestry statistician Bertil Matérn. [2]

  3. Covariance function - Wikipedia

    en.wikipedia.org/wiki/Covariance_function

    In probability theory and statistics, the covariance function describes how much two random variables change together (their covariance) with varying spatial or temporal separation. For a random field or stochastic process Z ( x ) on a domain D , a covariance function C ( x , y ) gives the covariance of the values of the random field at the two ...

  4. Newey–West estimator - Wikipedia

    en.wikipedia.org/wiki/Newey–West_estimator

    In MATLAB, the command hac in the Econometrics toolbox produces the Newey–West estimator (among others). [ 14 ] In Python , the statsmodels [ 15 ] module includes functions for the covariance matrix using Newey–West.

  5. Estimation of covariance matrices - Wikipedia

    en.wikipedia.org/wiki/Estimation_of_covariance...

    The sample covariance matrix (SCM) is an unbiased and efficient estimator of the covariance matrix if the space of covariance matrices is viewed as an extrinsic convex cone in R p×p; however, measured using the intrinsic geometry of positive-definite matrices, the SCM is a biased and inefficient estimator. [1]

  6. Unscented transform - Wikipedia

    en.wikipedia.org/wiki/Unscented_transform

    As an example, the estimated 2-dimensional position of an object of interest might be represented by a mean position vector, [,], with an uncertainty given in the form of a 2x2 covariance matrix giving the variance in , the variance in , and the cross covariance between the two. A covariance that is zero implies that there is no uncertainty or ...

  7. Kosambi–Karhunen–Loève theorem - Wikipedia

    en.wikipedia.org/wiki/Kosambi–Karhunen–Loève...

    The covariance function K X satisfies the definition of a Mercer kernel. By Mercer's theorem, there consequently exists a set λ k, e k (t) of eigenvalues and eigenfunctions of T K X forming an orthonormal basis of L 2 ([a,b]), and K X can be expressed as

  8. Covariance matrix - Wikipedia

    en.wikipedia.org/wiki/Covariance_matrix

    Throughout this article, boldfaced unsubscripted and are used to refer to random vectors, and Roman subscripted and are used to refer to scalar random variables.. If the entries in the column vector = (,, …,) are random variables, each with finite variance and expected value, then the covariance matrix is the matrix whose (,) entry is the covariance [1]: 177 ...

  9. Heteroskedasticity-consistent standard errors - Wikipedia

    en.wikipedia.org/wiki/Heteroskedasticity...

    For any non-linear model (for instance logit and probit models), however, heteroskedasticity has more severe consequences: the maximum likelihood estimates of the parameters will be biased (in an unknown direction), as well as inconsistent (unless the likelihood function is modified to correctly take into account the precise form of ...