Search results
Results From The WOW.Com Content Network
A parallel projection is a particular case of projection in mathematics and graphical projection in technical drawing. Parallel projections can be seen as the limit of a central or perspective projection, in which the rays pass through a fixed point called the center or viewpoint, as this point is moved towards
The point ¯ is the projection of a point = (,,) onto the projection plane Π. The foreshortenings are v x {\displaystyle v_{x}} , v y {\displaystyle v_{y}} and v z {\displaystyle v_{z}} . Pohlke's theorem is the basis for the following procedure to construct a scaled parallel projection of a three-dimensional object: [ 1 ] [ 2 ]
Because a parallel projection and a scaling preserves ratios one can map an arbitrary point = (,,) by the axonometric procedure below. Pohlke's theorem can be stated in terms of linear algebra as: Any affine mapping of the 3-dimensional space onto a plane can be considered as the composition of a similarity and a parallel projection.
Classification of Axonometric projection and some 3D projections "Axonometry" means "to measure along the axes". In German literature, axonometry is based on Pohlke's theorem, such that the scope of axonometric projection could encompass every type of parallel projection, including not only orthographic projection (and multiview projection), but also oblique projection.
Cylindrical equal-area projection with standard parallels at 30°N/S and an aspect ratio of (3/4)π ≈ 2.356. 2002 Hobo–Dyer: Cylindrical Equal-area Mick Dyer: Cylindrical equal-area projection with standard parallels at 37.5°N/S and an aspect ratio of 1.977. Similar are Trystan Edwards with standard parallels at 37.4° and Smyth equal ...
A projective plane of order N is a Steiner S(2, N + 1, N 2 + N + 1) system (see Steiner system). Conversely, one can prove that all Steiner systems of this form (λ = 2) are projective planes. The number of mutually orthogonal Latin squares of order N is at most N − 1. N − 1 exist if and only if there is a projective plane of order N.
The geometrical definition of a projected area is: "the rectilinear parallel projection of a surface of any shape onto a plane". This translates into the equation: A projected = ∫ A cos β d A {\displaystyle A_{\text{projected}}=\int _{A}\cos {\beta }\,dA} where A is the original area, and β {\displaystyle \beta } is the angle between ...
The foreshortening factor (1/2 in this example) is inversely proportional to the tangent of the angle (63.43° in this example) between the projection plane (colored brown) and the projection lines (dotted). Front view of the same. Oblique projection is a type of parallel projection: it projects an image by intersecting parallel rays (projectors)