Search results
Results From The WOW.Com Content Network
Transformation optics is the foundation for exploring a diverse set of theoretical, numerical, and experimental developments, involving the perspectives of the physics and engineering communities. The multi-disciplinary perspectives for inquiry and designing of materials develop understanding of their behaviors, properties, and potential ...
The + and invariants keep track of how curves change under these transformations and deformations. The + invariant increases by 2 when a direct self-tangency move creates new self-intersection points (and decreases by 2 when such points are eliminated), while decreases by 2 when an inverse self-tangency move creates new intersections (and increases by 2 when they are eliminated).
Using transformation theory, he introduced the concept of thermal cloaking. [7] In 2013, the application of metamaterials was further extended to particle diffusion systems, with the first proposal of particle diffusion cloaking under low diffusivity conditions. [ 8 ]
The following is a list of named topologies or topological spaces, many of which are counterexamples in topology and related branches of mathematics. This is not a list of properties that a topology or topological space might possess; for that, see List of general topology topics and Topological property.
A three-dimensional model of a figure-eight knot.The figure-eight knot is a prime knot and has an Alexander–Briggs notation of 4 1.. Topology (from the Greek words τόπος, 'place, location', and λόγος, 'study') is the branch of mathematics concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling ...
Absolutely closed See H-closed Accessible See . Accumulation point See limit point. Alexandrov topology The topology of a space X is an Alexandrov topology (or is finitely generated) if arbitrary intersections of open sets in X are open, or equivalently, if arbitrary unions of closed sets are closed, or, again equivalently, if the open sets are the upper sets of a poset.
In differential topology, sphere eversion is a theoretical process of turning a sphere inside out in a three-dimensional space (the word eversion means "turning inside out"). It is possible to smoothly and continuously turn a sphere inside out in this way (allowing self-intersections of the sphere's surface) without cutting or tearing it or ...
The obstruction to the existence of a section can often be measured by a cohomology class, which leads to the theory of characteristic classes in algebraic topology. The most well-known example is the hairy ball theorem, where the Euler class is the obstruction to the tangent bundle of the 2-sphere having a nowhere vanishing section.