When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Base (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Base_(chemistry)

    A strong base is a basic chemical compound that can remove a proton (H +) from (or deprotonate) a molecule of even a very weak acid (such as water) in an acid–base reaction. Common examples of strong bases include hydroxides of alkali metals and alkaline earth metals, like NaOH and Ca(OH) 2, respectively. Due to their low solubility, some ...

  3. Organic base - Wikipedia

    en.wikipedia.org/wiki/Organic_base

    An organic base is an organic compound which acts as a base. Organic bases are usually, but not always, proton acceptors. They usually contain nitrogen atoms, which can easily be protonated. For example, amines or nitrogen-containing heterocyclic compounds have a lone pair of electrons on the nitrogen atom and can thus act as proton acceptors. [1]

  4. List of reagents - Wikipedia

    en.wikipedia.org/wiki/List_of_reagents

    a strong base used in organic synthesis Sodium hydroxide: strong base with many industrial uses; in the laboratory, used with acids to produce the corresponding salt, also used as an electrolyte: Sodium hypochlorite: frequently used as a disinfectant or a bleaching agent Sodium nitrite: used to convert amines into diazo compounds Sulfuric acid

  5. Category:Bases (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Category:Bases_(chemistry)

    Bases are defined by the Brønsted–Lowry theory as chemical substances that can accept a proton, i.e., a hydrogen ion. In water this is equivalent to a hydronium ion). The Lewis theory instead defines a Base as an electron-pair donor. The Lewis definition is broader — all Brønsted–Lowry bases are also Lewis bases.

  6. Non-nucleophilic base - Wikipedia

    en.wikipedia.org/wiki/Non-nucleophilic_base

    2,6-Di-tert-butylpyridine, a weak non-nucleophilic base [2] pK a = 3.58; Phosphazene bases, such as t-Bu-P 4 [3] Non-nucleophilic bases of high strength are usually anions. For these species, the pK a s of the conjugate acids are around 35–40. Lithium diisopropylamide (LDA), pK a = 36

  7. Weak base - Wikipedia

    en.wikipedia.org/wiki/Weak_base

    An example of a weak base is ammonia. It does not contain hydroxide ions, but it reacts with water to produce ammonium ions and hydroxide ions. [4] The position of equilibrium varies from base to base when a weak base reacts with water. The further to the left it is, the weaker the base. [5]

  8. Amphoterism - Wikipedia

    en.wikipedia.org/wiki/Amphoterism

    Although an amphiprotic species must be amphoteric, the converse is not true. For example, a metal oxide such as zinc oxide, ZnO, contains no hydrogen and so cannot donate a proton. Nevertheless, it can act as an acid by reacting with the hydroxide ion, a base: ZnO + 2 OH − + H 2 O → [Zn(OH) 4] 2−. Zinc oxide can also act as a base:

  9. Alkali - Wikipedia

    en.wikipedia.org/wiki/Alkali

    Alkalis are usually defined as a subset of the bases. One of two subsets is commonly chosen. A basic salt of an alkali metal or alkaline earth metal [2] (this includes Mg(OH) 2 (magnesium hydroxide) but excludes NH 3 ). Any base that is soluble in water and forms hydroxide ions [3] [4] or the solution of a base in water. [5]