Search results
Results From The WOW.Com Content Network
For example, in a modern automobile engine, roughly 7% of the total power obtained from burning the engine's fuel is lost to friction between the engine's moving parts. [4] Conversely, the fewer the number of moving parts, the greater the efficiency. Machines with no moving parts at all can be very efficient.
Internal combustions engines require lubrication in operation that moving parts slide smoothly over each other. Insufficient lubrication subjects the parts of the engine to metal-to-metal contact, friction, heat build-up, rapid wear often culminating in parts becoming friction welded together e.g. pistons in their cylinders.
At high engine speeds over-speeding and over-temperaturing (going beyond the maximum allowable) must be prevented to avoid turbine blade damage. [21] An example of an HMU, although called a Constant All Speed Control (CASC), was the Rolls-Royce/Lucas fuel control used on the Rolls-Royce Spey. It performed all the above functions as well as ...
As diesel engines have become larger and their mechanisms heavier, air starters have come into use. [52] This is due to the lack of torque in electric starters. Air starters work by pumping compressed air into the cylinders of an engine to start it turning. Two-wheeled vehicles may have their engines started in one of four ways:
In an engine, its purpose is to transfer force from expanding gas in the cylinder to the crankshaft via a piston rod and/or connecting rod. In a pump, the function is reversed and force is transferred from the crankshaft to the piston for the purpose of compressing or ejecting the fluid in the cylinder.
Ray-traced image of a piston engine. There may be one or more pistons. Each piston is inside a cylinder, into which a gas is introduced, either already under pressure (e.g. steam engine), or heated inside the cylinder either by ignition of a fuel air mixture (internal combustion engine) or by contact with a hot heat exchanger in the cylinder (Stirling engine).
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
An early example is the 3.3 L (200 cu in) and 3.8 L (229 cu in) Chevrolet 90° V6 engines, which have an 18° offset crankshaft resulting in an uneven firing interval. Newer examples, such as the Honda C engine, use 30° offset crank pins, resulting in an even firing interval. As per V6 engines with 60° V angles, these engines have primary ...