When.com Web Search

  1. Ad

    related to: how to find missing angles in parallel lines

Search results

  1. Results From The WOW.Com Content Network
  2. Constructions in hyperbolic geometry - Wikipedia

    en.wikipedia.org/wiki/Constructions_in...

    We consider the problem of finding a line parallel to two given lines, a and a'. There are three cases: a and a' intersect at a point O, a and a' are parallel to each other, and a and a' are ultraparallel to each other. [3] Case 1: a and a' intersect at a point O, Bisect one of the angles made by these two lines and name the angle bisector b.

  3. Intercept theorem - Wikipedia

    en.wikipedia.org/wiki/Intercept_theorem

    The intercept theorem, also known as Thales's theorem, basic proportionality theorem or side splitter theorem, is an important theorem in elementary geometry about the ratios of various line segments that are created if two rays with a common starting point are intercepted by a pair of parallels.

  4. Thales's theorem - Wikipedia

    en.wikipedia.org/wiki/Thales's_theorem

    adjacent angles in a parallelogram are supplementary (add to 180°) and, the diagonals of a rectangle are equal and cross each other in their median point. Let there be a right angle ∠ ABC, r a line parallel to BC passing by A, and s a line parallel to AB passing by C. Let D be the point of intersection of lines r and s.

  5. Angle of parallelism - Wikipedia

    en.wikipedia.org/wiki/Angle_of_parallelism

    Angle of parallelism in hyperbolic geometry. In hyperbolic geometry, angle of parallelism () is the angle at the non-right angle vertex of a right hyperbolic triangle having two asymptotic parallel sides. The angle depends on the segment length a between the right angle and the vertex of the angle of parallelism.

  6. Parallel postulate - Wikipedia

    en.wikipedia.org/wiki/Parallel_postulate

    If the sum of the interior angles α and β is less than 180°, the two straight lines, produced indefinitely, meet on that side. In geometry, the parallel postulate, also called Euclid's fifth postulate because it is the fifth postulate in Euclid's Elements, is a distinctive axiom in Euclidean geometry. It states that, in two-dimensional geometry:

  7. Parallel (geometry) - Wikipedia

    en.wikipedia.org/wiki/Parallel_(geometry)

    Line art drawing of parallel lines and curves. In geometry, parallel lines are coplanar infinite straight lines that do not intersect at any point. Parallel planes are planes in the same three-dimensional space that never meet. Parallel curves are curves that do not touch each other or intersect and keep a fixed minimum distance. In three ...

  8. Arrangement of lines - Wikipedia

    en.wikipedia.org/wiki/Arrangement_of_lines

    The number of vertices is smaller when some lines are parallel, or when some vertices are crossed by more than two lines. [4] An arrangement can be rotated, if necessary, to avoid axis-parallel lines. After this step, each ray that forms an edge of the arrangement extends either upward or downward from its endpoint; it cannot be horizontal.

  9. Transversal (geometry) - Wikipedia

    en.wikipedia.org/wiki/Transversal_(geometry)

    A transversal that cuts two parallel lines at right angles is called a perpendicular transversal. In this case, all 8 angles are right angles [1] When the lines are parallel, a case that is often considered, a transversal produces several congruent supplementary angles. Some of these angle pairs have specific names and are discussed below ...