Search results
Results From The WOW.Com Content Network
A thermodynamic cycle consists of linked sequences of thermodynamic processes that involve transfer of heat and work into and out of the system, while varying pressure, temperature, and other state variables within the system, and that eventually returns the system to its initial state. [1]
An example of a cycle of idealized thermodynamic processes which make up the Stirling cycle. A quasi-static thermodynamic process can be visualized by graphically plotting the path of idealized changes to the system's state variables. In the example, a cycle consisting of four quasi-static processes is shown.
1824: Carnot: described the Carnot cycle, the idealized heat engine. 1824: Joseph Aspdin develops Portland cement , by heating ground limestone, clay and gypsum, in a kiln. 1827: Évariste Galois development of group theory. 1827: Georg Ohm: Ohm's law (Electricity). 1827: Amedeo Avogadro: Avogadro's law .
The main feature of thermodynamic diagrams is the equivalence between the area in the diagram and energy. When air changes pressure and temperature during a process and prescribes a closed curve within the diagram the area enclosed by this curve is proportional to the energy which has been gained or released by the air.
In thermodynamics, a temperature–entropy (T–s) diagram is a thermodynamic diagram used to visualize changes to temperature (T ) and specific entropy (s) during a thermodynamic process or cycle as the graph of a curve. It is a useful and common tool, particularly because it helps to visualize the heat transfer during a process.
German physicist and mathematician Rudolf Clausius restated Carnot's principle known as the Carnot cycle and gave to the theory of heat a truer and sounder basis. His most important paper, "On the Moving Force of Heat", [3] published in 1850, first stated the second law of thermodynamics. In 1865 he introduced the concept of entropy.
This timeline lists significant discoveries in physics and the laws of nature, including experimental discoveries, theoretical proposals that were confirmed experimentally, and theories that have significantly influenced current thinking in modern physics. Such discoveries are often a multi-step, multi-person process.
Thermodynamics defines the statistical behaviour of large numbers of entities, whose exact behavior is given by more specific laws. While the fundamental theoretical laws of physics are all time-reversible, [8] experimentally the probability of real reversibility is low and the former state of system and surroundings is recovered only to certain extent (see: uncertainty principle).