When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Lack-of-fit sum of squares - Wikipedia

    en.wikipedia.org/wiki/Lack-of-fit_sum_of_squares

    One takes as estimates of α and β the values that minimize the sum of squares of residuals, i.e., the sum of squares of the differences between the observed y-value and the fitted y-value. To have a lack-of-fit sum of squares that differs from the residual sum of squares, one must observe more than one y -value for each of one or more of the ...

  3. Proofs involving ordinary least squares - Wikipedia

    en.wikipedia.org/wiki/Proofs_involving_ordinary...

    Using matrix notation, the sum of squared residuals is given by S ( β ) = ( y − X β ) T ( y − X β ) . {\displaystyle S(\beta )=(y-X\beta )^{T}(y-X\beta ).} Since this is a quadratic expression, the vector which gives the global minimum may be found via matrix calculus by differentiating with respect to the vector β {\displaystyle \beta ...

  4. Least squares - Wikipedia

    en.wikipedia.org/wiki/Least_squares

    The result of fitting a set of data points with a quadratic function Conic fitting a set of points using least-squares approximation. In regression analysis, least squares is a parameter estimation method based on minimizing the sum of the squares of the residuals (a residual being the difference between an observed value and the fitted value provided by a model) made in the results of each ...

  5. Least absolute deviations - Wikipedia

    en.wikipedia.org/wiki/Least_absolute_deviations

    Least absolute deviations (LAD), also known as least absolute errors (LAE), least absolute residuals (LAR), or least absolute values (LAV), is a statistical optimality criterion and a statistical optimization technique based on minimizing the sum of absolute deviations (also sum of absolute residuals or sum of absolute errors) or the L 1 norm of such values.

  6. Linear least squares - Wikipedia

    en.wikipedia.org/wiki/Linear_least_squares

    It is a set of formulations for solving statistical problems involved in linear regression, including variants for ordinary (unweighted), weighted, and generalized (correlated) residuals. Numerical methods for linear least squares include inverting the matrix of the normal equations and orthogonal decomposition methods.

  7. Mean squared error - Wikipedia

    en.wikipedia.org/wiki/Mean_squared_error

    Also, the f-value is the ratio of the mean squared treatment and the MSE. MSE is also used in several stepwise regression techniques as part of the determination as to how many predictors from a candidate set to include in a model for a given set of observations.

  8. Errors and residuals - Wikipedia

    en.wikipedia.org/wiki/Errors_and_residuals

    The residual is the difference between the observed value and the estimated value of the quantity of interest (for example, a sample mean). The distinction is most important in regression analysis , where the concepts are sometimes called the regression errors and regression residuals and where they lead to the concept of studentized residuals .

  9. 68–95–99.7 rule - Wikipedia

    en.wikipedia.org/wiki/68–95–99.7_rule

    In statistics, the 68–95–99.7 rule, also known as the empirical rule, and sometimes abbreviated 3sr, is a shorthand used to remember the percentage of values that lie within an interval estimate in a normal distribution: approximately 68%, 95%, and 99.7% of the values lie within one, two, and three standard deviations of the mean, respectively.