When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Face (geometry) - Wikipedia

    en.wikipedia.org/wiki/Face_(geometry)

    where V is the number of vertices, E is the number of edges, and F is the number of faces. This equation is known as Euler's polyhedron formula. Thus the number of faces is 2 more than the excess of the number of edges over the number of vertices. For example, a cube has 12 edges and 8 vertices, and hence 6 faces.

  3. Cube - Wikipedia

    en.wikipedia.org/wiki/Cube

    A cube is a special case of rectangular cuboid in which the edges are equal in length. [1] Like other cuboids, every face of a cube has four vertices, each of which connects with three congruent lines. These edges form square faces, making the dihedral angle of a cube between every two adjacent squares being the interior angle of a square, 90 ...

  4. Polyhedral combinatorics - Wikipedia

    en.wikipedia.org/wiki/Polyhedral_combinatorics

    For instance, a cube has eight vertices, twelve edges, and six facets, so its ƒ-vector is (8,12,6). The dual polytope has a ƒ-vector with the same numbers in the reverse order; thus, for instance, the regular octahedron, the dual to a cube, has the ƒ-vector (6,12,8).

  5. Octahedron - Wikipedia

    en.wikipedia.org/wiki/Octahedron

    The faces of the octahedron's characteristic tetrahedron lie in the octahedron's mirror planes of symmetry. The octahedron is unique among the Platonic solids in having an even number of faces meeting at each vertex. Consequently, it is the only member of that group to possess, among its mirror planes, some that do not pass through any of its ...

  6. Edge (geometry) - Wikipedia

    en.wikipedia.org/wiki/Edge_(geometry)

    where V is the number of vertices, E is the number of edges, and F is the number of faces. This equation is known as Euler's polyhedron formula. Thus the number of edges is 2 less than the sum of the numbers of vertices and faces. For example, a cube has 8 vertices and 6 faces, and hence 12 edges.

  7. Hypercube - Wikipedia

    en.wikipedia.org/wiki/Hypercube

    The number of vertices of a hypercube of dimension is (a usual, -dimensional cube has = vertices, for instance). [ 5 ] The number of the m {\displaystyle m} -dimensional hypercubes (just referred to as m {\displaystyle m} -cubes from here on) contained in the boundary of an n {\displaystyle n} -cube is

  8. List of uniform polyhedra - Wikipedia

    en.wikipedia.org/wiki/List_of_uniform_polyhedra

    2 Names of polyhedra by number of ... a uniform polyhedron is a polyhedron which has regular polygons as faces and is vertex ... Truncated cube: 3.8.8: 2 3 | 4: O h ...

  9. 8-cube - Wikipedia

    en.wikipedia.org/wiki/8-cube

    In geometry, an 8-cube is an eight-dimensional hypercube. It has 256 vertices, 1024 edges, 1792 square faces, 1792 cubic cells, 1120 tesseract 4-faces, 448 5-cube 5-faces, 112 6-cube 6-faces, and 16 7-cube 7-faces. It is represented by Schläfli symbol {4,3 6}, being composed of 3 7-cubes around each 6-face.