When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Mass diffusivity - Wikipedia

    en.wikipedia.org/wiki/Mass_diffusivity

    The higher the diffusivity (of one substance with respect to another), the faster they diffuse into each other. Typically, a compound's diffusion coefficient is ~10,000× as great in air as in water. Carbon dioxide in air has a diffusion coefficient of 16 mm 2 /s, and in water its diffusion coefficient is 0.0016 mm 2 /s. [1] [2]

  3. Fick's laws of diffusion - Wikipedia

    en.wikipedia.org/wiki/Fick's_laws_of_diffusion

    Fick's first law relates the diffusive flux to the gradient of the concentration. It postulates that the flux goes from regions of high concentration to regions of low concentration, with a magnitude that is proportional to the concentration gradient (spatial derivative), or in simplistic terms the concept that a solute will move from a region of high concentration to a region of low ...

  4. Mass transfer coefficient - Wikipedia

    en.wikipedia.org/wiki/Mass_transfer_coefficient

    In engineering, the mass transfer coefficient is a diffusion rate constant that relates the mass transfer rate, mass transfer area, and concentration change as driving force: [1] = ˙ Where: is the mass transfer coefficient [mol/(s·m 2)/(mol/m 3)], or m/s

  5. Darken's equations - Wikipedia

    en.wikipedia.org/wiki/Darken's_equations

    Darken’s equations can be applied to almost any scenario involving the diffusion of two different components that have different diffusion coefficients. This holds true except in situations where there is an accompanying volume change in the material because this violates one of Darken’s critical assumptions that atomic volume is constant.

  6. Boltzmann–Matano analysis - Wikipedia

    en.wikipedia.org/wiki/Boltzmann–Matano_analysis

    Specifically, Matano proved that the diffusion rate of A atoms into a B-atom crystal lattice is a function of the amount of A atoms already in the B lattice. The importance of the classic Boltzmann–Matano method consists in the ability to extract diffusivities from concentration–distance data.

  7. Randles–Sevcik equation - Wikipedia

    en.wikipedia.org/wiki/Randles–Sevcik_equation

    D = diffusion coefficient in cm 2 /s; C = concentration in mol/cm 3; ν = scan rate in V/s; R = Gas constant in J K −1 mol −1; T = temperature in K; The constant with a value of 2.69×10 5 has units of C mol −1 V −1/2; For novices in electrochemistry, the predictions of this equation appear counter-intuitive, i.e. that i p increases at ...

  8. Molecular diffusion - Wikipedia

    en.wikipedia.org/wiki/Molecular_diffusion

    Molecular diffusion, often simply called diffusion, is the thermal motion of all (liquid or gas) particles at temperatures above absolute zero. The rate of this movement is a function of temperature, viscosity of the fluid and the size (mass) of the particles.

  9. Graham's law - Wikipedia

    en.wikipedia.org/wiki/Graham's_law

    Rate 1 is the rate of effusion for the first gas. (volume or number of moles per unit time). Rate 2 is the rate of effusion for the second gas. M 1 is the molar mass of gas 1 M 2 is the molar mass of gas 2. Graham's law states that the rate of diffusion or of effusion of a gas is inversely proportional to the square root of its molecular weight.