Ads
related to: variables in physics
Search results
Results From The WOW.Com Content Network
change in a variable (e.g. ) unitless Laplace operator: per square meter (m −2) displacement (usually small) meter (m) Dirac delta function: Kronecker delta (e.g ) epsilon: permittivity: farad per meter (F/m) strain: unitless
Conjugate variables are pairs of variables mathematically defined in such a way that they become Fourier transform duals, [1] [2] or more generally are related through Pontryagin duality. The duality relations lead naturally to an uncertainty relation—in physics called the Heisenberg uncertainty principle —between them.
The intensive (force) variable is the derivative of the internal energy with respect to the extensive (displacement) variable, while all other extensive variables are held constant. The thermodynamic square can be used as a tool to recall and derive some of the thermodynamic potentials based on conjugate variables.
Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal n̂, d is the dipole moment between two point charges, the volume density of these is the polarization density P.
In theoretical physics, the Mandelstam variables are numerical quantities that encode the energy, momentum, and angles of particles in a scattering process in a Lorentz-invariant fashion. They are used for scattering processes of two particles to two particles. The Mandelstam variables were first introduced by physicist Stanley Mandelstam in 1958.
In physics, there are equations in every field to relate physical quantities to each other and perform calculations. Entire handbooks of equations can only summarize most of the full subject, else are highly specialized within a certain field. Physics is derived of formulae only.
In physics and chemistry, an equation of state is a thermodynamic equation relating state variables, which describe the state of matter under a given set of physical conditions, such as pressure, volume, temperature, or internal energy. [1] [2] Most modern equations of state are formulated in the Helmholtz free energy.
This article consists of tables outlining a number of physical quantities.. The first table lists the fundamental quantities used in the International System of Units to define the physical dimension of physical quantities for dimensional analysis.