Search results
Results From The WOW.Com Content Network
A quantity undergoing exponential decay. Larger decay constants make the quantity vanish much more rapidly. This plot shows decay for decay constant (λ) of 25, 5, 1, 1/5, and 1/25 for x from 0 to 5. A quantity is subject to exponential decay if it decreases at a rate proportional to its current value.
For =, the process = will be a geometric progression (exponential growth or decay). In this case, the solution can be found analytically: X t = a φ t {\displaystyle X_{t}=a\varphi ^{t}} whereby a {\displaystyle a} is an unknown constant ( initial condition ).
This is a list of exponential topics, by Wikipedia page. See also list of logarithm topics. ... Exponential backoff; Exponential decay; Exponential dichotomy;
Fluorescence-lifetime imaging yields images with the intensity of each pixel determined by , which allows one to view contrast between materials with different fluorescence decay rates (even if those materials fluoresce at exactly the same wavelength), and also produces images which show changes in other decay pathways, such as in FRET imaging.
Weissberger’s modified exponential decay model, or simply, Weissberger’s model, is a radio wave propagation model that estimates the path loss due to the presence of one or more trees in a point-to-point telecommunication link. This model belongs to the category Foliage or Vegetation models.
The decay scheme of a radioactive substance is a graphical presentation of all the transitions occurring in a decay, and of their relationships. Examples are shown below. It is useful to think of the decay scheme as placed in a coordinate system, where the vertical axis is energy, increasing from bottom to top, and the horizontal axis is the proton number, increasing from left to right.
In phenomenological applications, it is often not clear whether the stretched exponential function should be used to describe the differential or the integral distribution function—or neither. In each case, one gets the same asymptotic decay, but a different power law prefactor, which makes fits more ambiguous than for simple exponentials.
The stages or steps in a decay chain are referred to by their relationship to previous or subsequent stages. Hence, a parent isotope is one that undergoes decay to form a daughter isotope. For example element 92, uranium, has an isotope with 144 neutrons (236 U) and it decays into an isotope of element 90, thorium, with 142 neutrons (232 Th ...