Search results
Results From The WOW.Com Content Network
Repeated sequences (also known as repetitive elements, repeating units or repeats) are short or long patterns that occur in multiple copies throughout the genome.In many organisms, a significant fraction of the genomic DNA is repetitive, with over two-thirds of the sequence consisting of repetitive elements in humans. [1]
Termination at a specific locus, when it occurs, involves the interaction between two components: (1) a termination site sequence in the DNA, and (2) a protein which binds to this sequence to physically stop DNA replication. In various bacterial species, this is named the DNA replication terminus site-binding protein, or Ter protein.
A tract of repetitive DNA in which a motif of a few base pairs is tandemly repeated numerous times (e.g. 5 to 50 times) is referred to as microsatellite DNA. Thus direct repeat tandem sequences are a form of microsattelite DNA. The process of DNA mismatch repair plays a prominent role in the formation of direct trinucleotide repeat expansions. [2]
Grey data points each represent a different DNA sequence position along the length of chromosome 2 as indicated on the x axis, with more positive values on the y-axis indicating earlier replication. A smoothed line (blue) is drawn through the data to visualize the domains of different replication timing.
All tandem repeat arrays are classifiable as satellite DNA, a name originating from the fact that tandem DNA repeats, by nature of repeating the same nucleotide sequences repeatedly, have a unique ratio of the two possible nucleotide base pair combinations, conferring them a specific mass density that allows them to be separated from the rest of the genome with density-based laboratory ...
During DNA replication, the replisome will unwind the parental duplex DNA into a two single-stranded DNA template replication fork in a 5' to 3' direction. The leading strand is the template strand that is being replicated in the same direction as the movement of the replication fork.
The DNA re-replication response is different from the response taken when damage is due to oxygen radical generation. Damage from oxygen radical generations leads to a response from the Myc oncogene, which phosphorylates p53 and H2AX. [16] The ATM/ATR DNA damage network will also respond to cases where there is an overexpression of Cdt1.
During normal DNA replication, the polymerase on the lagging strand is required to unclamp and re-clamp the replication region continuously. [24] When small scale repeats in the DNA sequence exist already, the polymerase can be 'confused' when it re-clamps to continue replication and instead of clamping to the correct base pairs, it may shift a ...