When.com Web Search

  1. Ad

    related to: question about dna replication

Search results

  1. Results From The WOW.Com Content Network
  2. DNA replication - Wikipedia

    en.wikipedia.org/wiki/DNA_replication

    Eukaryotes initiate DNA replication at multiple points in the chromosome, so replication forks meet and terminate at many points in the chromosome. Because eukaryotes have linear chromosomes, DNA replication is unable to reach the very end of the chromosomes. Due to this problem, DNA is lost in each replication cycle from the end of the chromosome.

  3. Eukaryotic DNA replication - Wikipedia

    en.wikipedia.org/wiki/Eukaryotic_DNA_replication

    Eukaryotic DNA replication is a conserved mechanism that ... Central to the question of how bidirectional replication forks are established at replication origins is ...

  4. Meselson–Stahl experiment - Wikipedia

    en.wikipedia.org/wiki/Meselson–Stahl_experiment

    After that, E. coli cells with only 15 N in their DNA were transferred to a 14 N medium and were allowed to divide; the progress of cell division was monitored by microscopic cell counts and by colony assay. DNA was extracted periodically and was compared to pure 14 N DNA and 15 N DNA. After one replication, the DNA was found to have ...

  5. Origin of replication - Wikipedia

    en.wikipedia.org/wiki/Origin_of_replication

    More than five decades ago, Jacob, Brenner, and Cuzin proposed the replicon hypothesis to explain the regulation of chromosomal DNA synthesis in E. coli. [18] The model postulates that a diffusible, trans-acting factor, a so-called initiator, interacts with a cis-acting DNA element, the replicator, to promote replication onset at a nearby origin.

  6. Licensing factor - Wikipedia

    en.wikipedia.org/wiki/Licensing_factor

    Origins of replication represent start sites for DNA replication and so their "firing" must be regulated to maintain the correct karyotype of the cell in question. The origins are required to fire only once per cell cycle, an observation that led to the postulated existence of licensing factors by biologists in the first place.

  7. Replisome - Wikipedia

    en.wikipedia.org/wiki/Replisome

    DNA is a duplex formed by two anti-parallel strands. Following Meselson-Stahl, the process of DNA replication is semi-conservative, whereby during replication the original DNA duplex is separated into two daughter strands (referred to as the leading and lagging strand templates). Each daughter strand becomes part of a new DNA duplex.

  8. Primer binding site - Wikipedia

    en.wikipedia.org/wiki/Primer_binding_site

    DNA polymerase will then take each nucleotide and make a new complementary DNA strand to the template strand, but only in the 5' to 3' direction. One of the new strands, the leading strand, moves in the 5' to 3' direction until it reaches the replication fork, allowing DNA polymerase to take the RNA primer and make a new complementary DNA ...

  9. S phase - Wikipedia

    en.wikipedia.org/wiki/S_phase

    Since new DNA must be packaged into nucleosomes to function properly, synthesis of canonical (non-variant) histone proteins occurs alongside DNA replication. During early S-phase, the cyclin E-Cdk2 complex phosphorylates NPAT , a nuclear coactivator of histone transcription. [ 6 ]