Search results
Results From The WOW.Com Content Network
Assume that we want to find intersection of two infinite lines in 2-dimensional space, defined as a 1 x + b 1 y + c 1 = 0 and a 2 x + b 2 y + c 2 = 0. We can represent these two lines in line coordinates as U 1 = (a 1, b 1, c 1) and U 2 = (a 2, b 2, c 2). The intersection P′ of two lines is then simply given by [4]
where is the dimension of the intersection (∩) of the interior (I), boundary (B), and exterior (E) of geometries a and b.. The terms interior and boundary in this article are used in the sense used in algebraic topology and manifold theory, not in the sense used in general topology: for example, the interior of a line segment is the line segment without its endpoints, and its ...
Alternatively, a line can be described as the intersection of two planes. Let L be a line contained in distinct planes a and b with homogeneous coefficients (a 0 : a 1 : a 2 : a 3) and (b 0 : b 1 : b 2 : b 3), respectively. (The first plane equation is =, for example.)
Lines A, B and C are concurrent in Y. In geometry, lines in a plane or higher-dimensional space are concurrent if they intersect at a single point.. The set of all lines through a point is called a pencil, and their common intersection is called the vertex of the pencil.
Intersecting lines are transformed to circles that intersect transversally at two points in the sphere, one of which is the projection point. (Similar remarks hold about the real projective plane, but the intersection relationships are different there.) The sphere, with various loxodromes shown in distinct colors
The line joining them is then called the Pascal line of the hexagon. Brianchon: If all six sides of a hexagon are tangent to a conic, then its diagonals (i.e. the lines joining opposite vertices) are three concurrent lines. Their point of intersection is then called the Brianchon point of the hexagon.
In geometry, a hyperplane of an n-dimensional space V is a subspace of dimension n − 1, or equivalently, of codimension 1 in V.The space V may be a Euclidean space or more generally an affine space, or a vector space or a projective space, and the notion of hyperplane varies correspondingly since the definition of subspace differs in these settings; in all cases however, any hyperplane can ...
A straight line in hyperbolic n-space is modeled by a geodesic on the hyperboloid. A geodesic on the hyperboloid is the (non-empty) intersection of the hyperboloid with a two-dimensional linear subspace (including the origin) of the n+1-dimensional Minkowski space.