Search results
Results From The WOW.Com Content Network
When these approaches are compared, the use of the Schrödinger equation is sometimes called "wave mechanics". The Klein-Gordon equation is a wave equation which is the relativistic version of the Schrödinger equation. The Schrödinger equation is nonrelativistic because it contains a first derivative in time and a second derivative in space ...
The Schrödinger equation determines how wave functions evolve over time, and a wave function behaves qualitatively like other waves, such as water waves or waves on a string, because the Schrödinger equation is mathematically a type of wave equation. This explains the name "wave function", and gives rise to wave–particle duality.
Defining equation SI unit Dimension Wavefunction: ψ, Ψ To solve from the Schrödinger equation: varies with situation and number of particles Wavefunction probability density: ρ = | | = m −3 [L] −3: Wavefunction probability current: j: Non-relativistic, no external field:
Weyl found a relativistic equation in terms of the Pauli matrices; the Weyl equation, for massless spin- 1 / 2 fermions. The problem was resolved by Dirac in the late 1920s, when he furthered the application of equation ( 2 ) to the electron – by various manipulations he factorized the equation into the form:
Demanding that the classical equations of motion are preserved is not a strong enough condition to determine the matrix elements. The Planck constant does not appear in the classical equations, so that the matrices could be constructed for many different values of ħ and still satisfy the equations of motion, but with different energy levels.
The Schrödinger equation describes the space- and time-dependence of the slow changing (non-relativistic) wave function of a quantum system. The solution of the Schrödinger equation for a bound system is discrete (a set of permitted states, each characterized by an energy level ) which results in the concept of quanta .
The time-independent Schrödinger equation for the wave function is ^ = [+ ()] = (), where Ĥ is the Hamiltonian, ħ is the reduced Planck constant, m is the mass, E the energy of the particle. The step potential is simply the product of V 0 , the height of the barrier, and the Heaviside step function : V ( x ) = { 0 , x < 0 V 0 , x ≥ 0 ...
The quantum wave equation can be solved using functions of position, (), or using functions of momentum, () and consequently the superposition of momentum functions are also solutions: = + The position and momentum solutions are related by a linear transformation, a Fourier transformation. This transformation is itself a quantum superposition ...