Search results
Results From The WOW.Com Content Network
fMRI imaging is also being used to analyze brain activity during intentional lies. Findings have shown that the dorsolateral prefrontal cortex activates when subjects are pretending to know information, but that the right anterior hippocampus activates when a subject presents false recognition in contrast to lying or accurately telling a truth.
Functional magnetic resonance imaging data. Functional neuroimaging is the use of neuroimaging technology to measure an aspect of brain function, often with a view to understanding the relationship between activity in certain brain areas and specific mental functions.
The cause for the correlations in fMRI measurements is theorized to be "correlated firing rates of interconnected neurons." [18] Resting-state functional magnetic resonance imaging (rs-fMRI) has become a powerful tool to examine networks' functional connectivity throughout the brain, such as the default mode network (DMN). [19]
The fMRI concept builds on the earlier MRI scanning technology and the discovery of properties of oxygen-rich blood. MRI brain scans use a strong, permanent, static magnetic field - expressed in Tesla (T) - to align nuclei in the brain region being studied. Another magnetic field, the gradient field, is then applied to spatially locate ...
Psychophysiological interaction (PPI) is a brain connectivity analysis method for functional brain imaging data, mainly functional magnetic resonance imaging (fMRI). It estimates context-dependent changes in effective connectivity (coupling) between brain regions.
The varying techniques of imaging-based testing search for different signs of intelligence. The types of intelligence analyzed in this review were fluid intelligence (Gf), general intelligence (g), and crystallized intelligence (Gc). Early studies utilized information from patients with brain damage, noticing changes in intelligence scores that ...
Resting state fMRI (rs-fMRI or R-fMRI), also referred to as task-independent fMRI or task-free fMRI, is a method of functional magnetic resonance imaging (fMRI) that is used in brain mapping to evaluate regional interactions that occur in a resting or task-negative state, when an explicit task is not being performed.
CONN includes a user-friendly GUI to manage all aspects of functional connectivity analyses, [1] including preprocessing of functional and anatomical volumes, [2] elimination of subject-movement and physiological noise, [3] outlier scrubbing, [4] estimation of multiple connectivity and network measures, and population-level hypothesis testing.