Search results
Results From The WOW.Com Content Network
In engineering, the Moody chart or Moody diagram (also Stanton diagram) is a graph in non-dimensional form that relates the Darcy–Weisbach friction factor f D, Reynolds number Re, and surface roughness for fully developed flow in a circular pipe. It can be used to predict pressure drop or flow rate down such a pipe.
The head loss Δh (or h f) expresses the pressure loss due to friction in terms of the equivalent height of a column of the working fluid, so the pressure drop is =, where: Δh = The head loss due to pipe friction over the given length of pipe (SI units: m); [b]
The Hazen–Williams equation is an empirical relationship that relates the flow of water in a pipe with the physical properties of the pipe and the pressure drop caused by friction. It is used in the design of water pipe systems [ 1 ] such as fire sprinkler systems , [ 2 ] water supply networks , and irrigation systems.
The path or series of states through which a system passes from an initial equilibrium state to a final equilibrium state [1] and can be viewed graphically on a pressure-volume (P-V), pressure-temperature (P-T), and temperature-entropy (T-s) diagrams. [2] There are an infinite number of possible paths from an initial point to an end point in a ...
With no thermal diffusion, the temperature drop is abrupt. The thermal displacement thickness is the distance by which the hypothetical fluid surface would have to be moved in the y {\displaystyle y} -direction to give the same integrated temperature as occurs between the wall and the reference plane at δ T {\displaystyle \delta _{T}} in the ...
The representation is made on a temperature-relative humidity, instead of a standard psychrometric chart. The comfort zone in blue represents the 90% of acceptability, which means the conditions between -0.5 and +0.5 PMV, or PPD < 10%.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
These include the flow through a jet engine, through the nozzle of a rocket, from a broken gas line, and past the blades of a turbine. m = Mach number V = velocity R = universal gas constant p = pressure k = specific heat ratio T = temperature * = sonic conditions ρ = density A = area M m = molar mass