Search results
Results From The WOW.Com Content Network
However, for understanding electromagnetic waves and polarization in particular, it is easier to just consider coherent plane waves; these are sinusoidal waves of one particular direction (or wavevector), frequency, phase, and polarization state.
The plane of vibration, containing both electric vectors (E & D) and both propagation vectors, is sometimes called the "plane of polarization" by modern authors. Fresnel's "plane of polarization", traditionally used in optics, is the plane containing the magnetic vectors (B & H) and the wave-normal.
See polarization and plane of polarization for more information. The orientation of a linearly polarized electromagnetic wave is defined by the direction of the electric field vector. [2] For example, if the electric field vector is vertical (alternately up and down as the wave travels) the radiation is said to be vertically polarized.
The term is also used, even more specifically, to mean a "monochromatic" or sinusoidal plane wave: a travelling plane wave whose profile () is a sinusoidal function. That is, (,) = (() +) The parameter , which may be a scalar or a vector, is called the amplitude of the wave; the scalar coefficient is its "spatial frequency"; and the scalar is its "phase shift".
Photon polarization is the quantum mechanical description of the classical polarized sinusoidal plane electromagnetic wave. An individual photon can be described as having right or left circular polarization , or a superposition of the two.
All the polarization information can be reduced to a single vector, called the Jones vector, in the x-y plane. This vector, while arising from a purely classical treatment of polarization, can be interpreted as a quantum state vector. The connection with quantum mechanics is made in the article on photon polarization.
For a linearly-polarized antenna, this is the plane containing the electric field vector (sometimes called the E aperture) and the direction of maximum radiation. The electric field or "E" plane determines the polarization or orientation of the radio wave. For a vertically polarized antenna, the E-plane usually coincides with the vertical ...
An elliptically polarized wave may be resolved into two linearly polarized waves in phase quadrature, with their polarization planes at right angles to each other. Since the electric field can rotate clockwise or counterclockwise as it propagates, elliptically polarized waves exhibit chirality .