Ad
related to: how do you substitution algebra
Search results
Results From The WOW.Com Content Network
Change of variables is an operation that is related to substitution. However these are different operations, as can be seen when considering differentiation or integration (integration by substitution). A very simple example of a useful variable change can be seen in the problem of finding the roots of the sixth-degree polynomial:
Substitution is a basic operation in algebra, in particular in computer algebra. [ 10 ] [ 11 ] A common case of substitution involves polynomials , where substitution of a numerical value (or another expression) for the indeterminate of a univariate polynomial amounts to evaluating the polynomial at that value.
In calculus, integration by substitution, also known as u-substitution, reverse chain rule or change of variables, [1] is a method for evaluating integrals and antiderivatives. It is the counterpart to the chain rule for differentiation , and can loosely be thought of as using the chain rule "backwards."
Substitution, written M[x := N], is the process of replacing all free occurrences of the variable x in the expression M with expression N. Substitution on terms of the lambda calculus is defined by recursion on the structure of terms, as follows (note: x and y are only variables while M and N are any lambda expression): x[x := N] = N
The substitution rule states that for any φ and any term t, one can conclude φ[t/x] from φ provided that no free variable of t becomes bound during the substitution process. (If some free variable of t becomes bound, then to substitute t for x it is first necessary to change the bound variables of φ to differ from the free variables of t.)
Substitution (law), the replacement of a judge; Substitution (sport), where a sports team is able to change one player for another during a match; Substitution therapy or opiate replacement therapy; Import substitution industrialization, a trade and economic policy; Penal substitution, a theory of the atonement within Christian theology
The substitutions of Euler can be generalized by allowing the use of imaginary numbers. For example, in the integral +, the substitution + = + can be used. Extensions to the complex numbers allows us to use every type of Euler substitution regardless of the coefficients on the quadratic.
In mathematics, a trigonometric substitution replaces a trigonometric function for another expression. In calculus, trigonometric substitutions are a technique for evaluating integrals. In this case, an expression involving a radical function is replaced with a trigonometric one. Trigonometric identities may help simplify the answer.