Search results
Results From The WOW.Com Content Network
Leonhard Euler is credited of introducing both specifications in two publications written in 1755 [3] and 1759. [4] [5] Joseph-Louis Lagrange studied the equations of motion in connection to the principle of least action in 1760, later in a treaty of fluid mechanics in 1781, [6] and thirdly in his book Mécanique analytique. [5]
The Euler–Lagrange equation was developed in connection with their studies of the tautochrone problem. The Euler–Lagrange equation was developed in the 1750s by Euler and Lagrange in connection with their studies of the tautochrone problem. This is the problem of determining a curve on which a weighted particle will fall to a fixed point in ...
In field theory, the independent variable is replaced by an event in spacetime (x, y, z, t), or more generally still by a point s on a Riemannian manifold.The dependent variables are replaced by the value of a field at that point in spacetime (,,,) so that the equations of motion are obtained by means of an action principle, written as: =, where the action, , is a functional of the dependent ...
However, the Euler–Lagrange equations can only account for non-conservative forces if a potential can be found as shown. This may not always be possible for non-conservative forces, and Lagrange's equations do not involve any potential, only generalized forces; therefore they are more general than the Euler–Lagrange equations.
According to the fundamental lemma of calculus of variations, the part of the integrand in parentheses is zero, i.e. ′ = which is called the Euler–Lagrange equation. The left hand side of this equation is called the functional derivative of J [ f ] {\displaystyle J[f]} and is denoted δ J {\displaystyle \delta J} or δ f ( x ...
These equations are identical in form to the ones obtained from the Euler-Lagrange equations with Lagrangian = by raising the indices. [10] In turn, these equations are identical to the geodesic equations, [ 11 ] which confirms that the solutions given by the principle of stationary integral of energy are geodesic.
Hamilton's principle states that the true evolution q(t) of a system described by N generalized coordinates q = (q 1, q 2, ..., q N) between two specified states q 1 = q(t 1) and q 2 = q(t 2) at two specified times t 1 and t 2 is a stationary point (a point where the variation is zero) of the action functional [] = ((), ˙ (),) where (, ˙,) is the Lagrangian function for the system.
A field theory tends to be expressed mathematically by using Lagrangians. This is a function that, when subjected to an action principle, gives rise to the field equations and a conservation law for the theory. The action is a Lorentz scalar, from which the field equations and symmetries can be readily derived.