When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Euler–Lagrange equation - Wikipedia

    en.wikipedia.org/wiki/EulerLagrange_equation

    The EulerLagrange equation was developed in the 1750s by Euler and Lagrange in connection with their studies of the tautochrone problem. This is the problem of determining a curve on which a weighted particle will fall to a fixed point in a fixed amount of time, independent of the starting point.

  3. Calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Calculus_of_Variations

    These equations for solution of a first-order partial differential equation are identical to the EulerLagrange equations if we make the identification = ˙ ˙. We conclude that the function ψ {\displaystyle \psi } is the value of the minimizing integral A {\displaystyle A} as a function of the upper end point.

  4. Inverse problem for Lagrangian mechanics - Wikipedia

    en.wikipedia.org/wiki/Inverse_problem_for...

    In mathematics, the inverse problem for Lagrangian mechanics is the problem of determining whether a given system of ordinary differential equations can arise as the EulerLagrange equations for some Lagrangian function. There has been a great deal of activity in the study of this problem since the early 20th century.

  5. Lagrangian mechanics - Wikipedia

    en.wikipedia.org/wiki/Lagrangian_mechanics

    However, the EulerLagrange equations can only account for non-conservative forces if a potential can be found as shown. This may not always be possible for non-conservative forces, and Lagrange's equations do not involve any potential, only generalized forces; therefore they are more general than the EulerLagrange equations.

  6. Hilbert's nineteenth problem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_nineteenth_problem

    Hilbert calls this a "regular variational problem". [9] Property means that these are minimum problems. Property is the ellipticity condition on the EulerLagrange equations associated to the given functional, while property is a simple regularity assumption about the function F. [10]

  7. Direct method in the calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Direct_method_in_the...

    This is similar to solving the EulerLagrange equation with Dirichlet boundary conditions. Additionally there are settings in which there are minimizers in , (,) but not in , (,). The idea of solving minimization problems while restricting the values on the boundary can be further generalized by looking on function spaces where the trace is ...

  8. Action principles - Wikipedia

    en.wikipedia.org/wiki/Action_principles

    Building on the early work of Pierre Louis Maupertuis, Leonhard Euler, and Joseph-Louis Lagrange defining versions of principle of least action, [34]: 580 William Rowan Hamilton and in tandem Carl Gustav Jacob Jacobi developed a variational form for classical mechanics known as the Hamilton–Jacobi equation. [35]: 201

  9. Minimal surface - Wikipedia

    en.wikipedia.org/wiki/Minimal_surface

    Minimal surface theory originates with Lagrange who in 1762 considered the variational problem of finding the surface = (,) of least area stretched across a given closed contour. He derived the EulerLagrange equation for the solution