Search results
Results From The WOW.Com Content Network
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
List of unsolved problems may refer to several notable conjectures or open problems in various academic fields: Natural sciences, engineering and medicine
For example, if s=2, then 𝜁(s) is the well-known series 1 + 1/4 + 1/9 + 1/16 + …, which strangely adds up to exactly 𝜋²/6. When s is a complex number—one that looks like a+b𝑖, using ...
"The problem of deciding whether the definite contour multiple integral of an elementary meromorphic function is zero over an everywhere real analytic manifold on which it is analytic", a consequence of the MRDP theorem resolving Hilbert's tenth problem. [6] Determining the domain of a solution to an ordinary differential equation of the form
The seven selected problems span a number of mathematical fields, namely algebraic geometry, arithmetic geometry, geometric topology, mathematical physics, number theory, partial differential equations, and theoretical computer science. Unlike Hilbert's problems, the problems selected by the Clay Institute were already renowned among ...
In mathematics, particularly in algebra, an indeterminate equation is an equation for which there is more than one solution. [1] For example, the equation a x + b y = c {\displaystyle ax+by=c} is a simple indeterminate equation, as is x 2 = 1 {\displaystyle x^{2}=1} .
Verbal arithmetic, also known as alphametics, cryptarithmetic, cryptarithm or word addition, is a type of mathematical game consisting of a mathematical equation among unknown numbers, whose digits are represented by letters of the alphabet. The goal is to identify the value of each letter.
But clearly not all real numbers are solutions to the original equation. The problem is that multiplication by zero is not invertible: if we multiply by any nonzero value, we can reverse the step by dividing by the same value, but division by zero is not defined, so multiplication by zero cannot be reversed.