Search results
Results From The WOW.Com Content Network
The free will theorem states: Given the axioms, if the choice about what measurement to take is not a function of the information accessible to the experimenters (free will assumption), then the results of the measurements cannot be determined by anything previous to the experiments. That is an "outcome open" theorem:
SmartXML, a free programming language with integrated development environment (IDE) for mathematical calculations. Variables of BigNumber type can be used, or regular numbers can be converted to big numbers using conversion operator # (e.g., #2.3^2000.1). SmartXML big numbers can have up to 100,000,000 decimal digits and up to 100,000,000 whole ...
In computer science, arbitrary-precision arithmetic, also called bignum arithmetic, multiple-precision arithmetic, or sometimes infinite-precision arithmetic, indicates that calculations are performed on numbers whose digits of precision are potentially limited only by the available memory of the host system.
The Carmichael lambda function of a prime power can be expressed in terms of the Euler totient. Any number that is not 1 or a prime power can be written uniquely as the product of distinct prime powers, in which case λ of the product is the least common multiple of the λ of the prime power factors.
The Isabelle [a] automated theorem prover is a higher-order logic (HOL) theorem prover, written in Standard ML and Scala.As a Logic for Computable Functions (LCF) style theorem prover, it is based on a small logical core (kernel) to increase the trustworthiness of proofs without requiring, yet supporting, explicit proof objects.
A composite number n is a strong pseudoprime to at most one quarter of all bases below n; [3] [4] thus, there are no "strong Carmichael numbers", numbers that are strong pseudoprimes to all bases. Thus given a random base, the probability that a number is a strong pseudoprime to that base is less than 1/4, forming the basis of the widely used ...
George Marsaglia established the lattice structure of linear congruential generators in the paper "Random numbers fall mainly in the planes", [2] later termed Marsaglia's theorem. [3] This phenomenon means that n -tuples with coordinates obtained from consecutive use of the generator will lie on a small number of equally spaced hyperplanes in n ...
A structure similar to LCGs, but not equivalent, is the multiple-recursive generator: X n = (a 1 X n−1 + a 2 X n−2 + ··· + a k X n−k) mod m for k ≥ 2. With a prime modulus, this can generate periods up to m k −1, so is a useful extension of the LCG structure to larger periods.