Search results
Results From The WOW.Com Content Network
A simplified diagram of photosynthesis. Redrawn in vector format from Image:Simple_photosynthesis_overview.PNG: Date: 18 April 2008: Source: Own work: Author: Daniel Mayer (mav) - original image Vector version by Yerpo: Other versions
Photosynthesis usually refers to oxygenic photosynthesis, a process that produces oxygen. Photosynthetic organisms store the chemical energy so produced within intracellular organic compounds (compounds containing carbon) like sugars, glycogen , cellulose and starches .
The electron transport chain of photosynthesis is often put in a diagram called the Z-scheme, because the redox diagram from P680 to P700 resembles the letter Z. [3] The final product of PSII is plastoquinol, a mobile electron carrier in the membrane. Plastoquinol transfers the electron from PSII to the proton pump, cytochrome b6f. The ultimate ...
Reaction centers are present in all green plants, algae, and many bacteria.A variety in light-harvesting complexes exist across the photosynthetic species. Green plants and algae have two different types of reaction centers that are part of larger supercomplexes known as P700 in Photosystem I and P680 in Photosystem II.
A leaf (pl.: leaves) is a principal appendage of the stem of a vascular plant, [1] usually borne laterally above ground and specialized for photosynthesis.Leaves are collectively called foliage, as in "autumn foliage", [2] [3] while the leaves, stem, flower, and fruit collectively form the shoot system. [4]
Light-dependent reactions of photosynthesis at the thylakoid membrane. Photosystems are functional and structural units of protein complexes involved in photosynthesis. Together they carry out the primary photochemistry of photosynthesis: the absorption of light and the transfer of energy and electrons.
The following is a breakdown of the energetics of the photosynthesis process from Photosynthesis by Hall and Rao: [6]. Starting with the solar spectrum falling on a leaf, 47% lost due to photons outside the 400–700 nm active range (chlorophyll uses photons between 400 and 700 nm, extracting the energy of one 700 nm photon from each one)
Quantasomes are particles found in the thylakoid membrane of chloroplasts in which photosynthesis takes place. They are embedded in a paracrystalline array on the surface of thylakoid discs in chloroplasts. They are composed of lipids and proteins that include various photosynthetic pigments and redox carriers.